
Drawing graphs withGraphviz

Emden R. Gansner

April 27, 2009

1

GraphvizDrawing Library Manual, April 27, 2009 2

Contents

1 Introduction 3
1.1 String-based layouts 3

1.1.1 dot . 3
1.1.2 xdot . 4
1.1.3 plain . 5
1.1.4 plain-ext .. . 6
1.1.5 GXL . 6

1.2 Graphvizas a library . 6

2 Basic graph drawing 7
2.1 Creating the graph 7

2.1.1 Attributes 9
2.2 Laying out the graph 11
2.3 Rendering the graph 15

2.3.1 Drawing nodes and edges 17
2.4 Cleaning up a graph 18

3 Inside the layouts 18
3.1 dot . 19
3.2 neato . 20
3.3 fdp . 21
3.4 twopi . 21
3.5 circo . 22

4 TheGraphvizcontext 22
4.1 Application-specific data 23

5 Graphics renderers 23
5.1 TheGVJ t data structure . 27
5.2 Inside theobj state t data structure . 28
5.3 Color information 29

6 Adding Plug-ins 29
6.1 Writing a renderer plug-in 31
6.2 Writing a device plug-in 32
6.3 Writing an image loading plug-in 32

7 Unconnected graphs 35

A Compiling and linking 39

B A sample program: simple.c 40

C A sample program: dot.c 41

D A sample program: demo.c 42

E Some basic types and their string representations 43

GraphvizDrawing Library Manual, April 27, 2009 3

1 Introduction

The Graphvizpackage consists of a variety of software for drawing attributed graphs. It implements a
handful of common graph layout algorithms. These are:

dot A Sugiyama-style hierarchical layout[STT81, GKNV93].

neato An implementation of the Kamada-Kawai algorithm[KK89] for“symmetric” layouts. This is a vari-
ation of multidimensional scaling[KS80, Coh87].

fdp An implementation of the Fruchterman-Reingold algorithm[FR91] for “symmetric” layouts. This lay-
out is similar to neato, but there are performance and feature differences.

twopi A radial layout as described by Wills[Wil97].

circo A circular layout combining aspects of the work of Six and Tollis[ST99, ST00] and Kaufmann and
Wiese[KW].

In addition,Graphvizprovides an assortment of more general-purpose graph algorithms, such as transitive
reduction, which have proven useful in the context of graph drawing.

The package was designed[GN00] to rely on the “program-as-filter” model of software, in which dis-
tinct graph operations or transformations are embodied as programs. Graph drawing and manipulation are
achieved by using the output of one filter as the input of another, with each filter recognizing a common,
text-based graph format. One thus has an algebra of graphs, using a scripting language to provide the base
language with variables and function application and composition.

Despite the simplicity and utility of this approach, some applications need or desire to use the software
as a library with bindings in a non-scripting language, rather than as primitives composed using a scripting
language. TheGraphvizsoftware provides a variety of ways to achieve this, runninga spectrum from very
simple but somewhat inflexible to fairly complex but offering a good deal of application control.

1.1 String-based layouts

The simplest mechanism for doing this consists of using the filter approach in disguise. The application,
perhaps using theGraphvizgraph library, constructs a representation of a graph in theDOT language. The
application can then invoke the desired layout program, e.g., usingsystem or popen on a Unix system,
passing the graph using an intermediate file or a pipe. The layout program computes position information
for the graph, attaches this as attributes, and delivers thegraph back to the application through another file
or pipe. The application can then read in the graph, and applythe geometric information as necessary. This
is the approach used by many applications, e.g., dotty[KN94] and grappa[LBM97], which rely onGraphviz.

There are severalGraphvizoutput formats which can be used in this approach. As with alloutput
formats, they are specified by using a-T flag when invoking the layout program. The input to the programs
must always be in theDOT language.

1.1.1 dot

This format relies on theDOT language to describe the graphs, with attributes attached as name-value pairs.
Thegraph library provides a parser for graphs represented inDOT. Using this, it is easy to read the

graphs and query the desired attributes usingagget or agxget. For more information on these functions,
see Section 2.1.1. The string representations of the various types referred to are described in Appendix E.

On output, the graph will have abb attribute of typerectangle, specifying the bounding box of the
drawing. If the graph has a label, its position is specified bythelp attribute of typepoint.

GraphvizDrawing Library Manual, April 27, 2009 4

Each node getspos, width andheight attributes. The first has typepoint, and indicates the center
of the node in points. Thewidth andheight attributes are floating point numbers giving the width and
height, in inches, of the node’s bounding box. If the node hasa record shape, the record rectangles are given
in therects attribute. This has the format of a space-separated list of rectangles. If the node is a polygon
(including ellipses) and thevertices attribute is defined for nodes, this attribute will contain the vertices
of the node, in inches, as a space-separated list ofpointf values. For ellipses, the curve is sampled, the
number of points used being controlled by thesamplepoints attribute. The points are given relative
to the center of the node. Note also that the points only give the node’s basic shape; they do not reflect
any internal structure. If the node hasperipheries greater than one, or a shape like"Msquare", the
vertices attribute does not represent the extra curves or lines.

Every edge is assigned apos attribute havingsplineType type. If the edge has a label, the label
position is given in thelp of typepoint.

1.1.2 xdot

Thexdot format is a strict extension of thedot format, in that it provides the same attributes asdot as
well as additional drawing attributes. These additional attributes specify how to draw each component of the
graph using primitive graphics operations. This can be particularly helpful in dealing with node shapes and
edge arrowheads. Unlike the information provided by thevertices attribute described above, the extra
attributes inxdot provide all geometric drawing information, including the various types of arrowheads
and multiline labels with variations in alignment. In addition, all the parameters use the same units.

There are six new attributes, listed in Table 1. These drawing attributes are only attached to nodes and
edges. Clearly, the last four attributes are only attached to edges.

draw General drawing operations
ldraw Label drawing operations
hdraw Head arrowhead
tdraw Tail arrowhead
hldraw Head label
tldraw Tail label

Table 1:xdot drawing attributes

The value of these attributes are strings consisting of the concatenation of some (multi-)set of the 7
drawing operations listed in Table 2. The color, font name, and style values supplied in theC, c, F , andS
operations have the same format and interpretation as thecolor, fontname, andstyle attributes in the
source graph.

In handling alignment, the application may want to recompute the string width using its own font draw-
ing primitives.

The text operation is only used in thelabel attributes. Normally, the non-text graphics operations are
only used in the non-label attributes. If, however, a node has shape="record" or an HTML-like label
is involved, a label attribute may also contain various graphics operations. In addition, if thedecorate
attribute is set on an edge, itslabel attribute will also contain a polyline operation.

All coordinates and sizes are in points. If an edge or node is invisible, no drawing operations are attached
to it.

GraphvizDrawing Library Manual, April 27, 2009 5

E x0 y0 w h Filled ellipse with equation((x − x0)/w)2 + ((y − y0)/h)2 = 1
e x0 y0 w h Unfilled ellipse with equation((x − x0)/w)2 + ((y − y0)/h)2 = 1
P n x1 y1 . . . xn yn Filled polygon with the givenn vertices
p n x1 y1 . . . xn yn Unfilled polygon with the givenn vertices
L n x1 y1 . . . xn yn Polyline with the givenn vertices
B n x1 y1 . . . xn yn B-spline with the givenn control points.n ≡ 1mod3 andn ≥ 4
b n x1 y1 . . . xn yn Filled B-spline with the givenn control points.n ≡ 1mod3 andn ≥ 4
T x y j w n −c1c2 · · · cn Text drawn using the baseline point(x, y). The text consists of then bytes

following ’-’. The text should be left-aligned (centered, right-aligned) on
the point ifj is -1 (0, 1), respectively. The valuew gives the width of the
text as computed by the library.

C n −c1c2 · · · cn Set color used to fill closed regions. The color is specified bythen char-
acters following’-’.

c n −c1c2 · · · cn Set pen color, the color used for text and line drawing. The color is speci-
fied by then characters following’-’.

F s n −c1c2 · · · cn Set font. The font size iss points. The font name is specified by then
characters following’-’.

S n −c1c2 · · · cn Set style attribute. The style value is specified by then characters following
’-’.

Table 2:xdot drawing operations

1.1.3 plain

Theplain format is line-based and very simple to parse. This works well for applications which need or
wish to avoid using thegraph library. The price for this simplicity is that the format encodes very little
detailed layout information beyond basic position information. If an application needs more than what is
supplied in the format, it should use thedot or xdot format.

There are four types of lines:graph, node, edge andstop. The output consists of a singlegraph
line; a sequence ofnode lines, one for each node; a sequence ofedge lines, one for each edge; and a
single terminatingstop line. All units are in inches, represented by a floating pointnumber.

As noted, the statements have very simple formats.

graph scale width height
node name x y width height label style shape color fillcolor
edge tail head nx1 y1 ... xn yn [label xl yl] style color
stop

We now describe the statements in more detail.

graph The width andheight values give the width and height of the drawing. The lower left corner of
the drawing is at the origin. Thescalevalue indicates how the drawing should be scaled if asize
attribute was given and the drawing needs to be scaled to conform to that size. If no scaling is
necessary, it will be set to 1.0. Note that all graph, node andedge coordinates and lengths are given
unscaled.

node Thenamevalue is the name of the node, andx andy give the node’s position. Thewidth andheight
are the width and height of the node. Thelabel, style, shape, color andfillcolor values give the node’s
label, style, shape, color and fillcolor, respectively, using default attribute values where necessary. If
the node does not have astyle attribute,"solid" is used.

GraphvizDrawing Library Manual, April 27, 2009 6

edge The tail and headvalues give the names of the head and tail nodes.n is the number of control
points defining the B-spline forming the edge. This is followed by2 ∗ n numbers giving the x and
y coordinates of the control points in order from tail to head. If the edge has alabel attribute,
this comes next, followed by the x and y coordinates of the label’s position. The edge description is
completed by the edge’s style and color. As with nodes, if a style is not defined,"solid" is used.

1.1.4 plain-ext

Theplain-ext format is identical with theplain format, except that port names are attached to the
node names in an edge, when applicable. It uses the usualDOT representation, where portp of noden is
given asn:p.

1.1.5 GXL

The GXL [Win02] dialect of XML is a widely accepted standard for representing attributed graphs as text,
especially in the graph drawing and software engineering communities. As an XML dialect, there are
many tools available for parsing and analyzing graphs represented in this format. Other graph drawing
and manipulation packages either use GXL as their main graphlanguage, or provide a translator. In this,
Graphviz is no different. We supply the programsdot2gxl andgxl2dot for converting between the
DOT and GXL formats. Thus, if an application is XML-based, touse theGraphviztools, it needs to insert
these filters as appropriate between its I/O and theGraphvizlayout programs.

1.2 Graphvizas a library

The role of this document is to describe how an application can use theGraphvizsoftware as a library rather
than as a set of programs. It will describe the intended API atvarious levels, concentrating on the purpose
of the functions from an application standpoint, and the waythe library functions should be used together,
e.g., that one has to call function A before function B. The intention is not to provide detailed manual pages,
partly because most of the functions have a high-level interface, often just taking a graph pointer as the
sole argument. The real semantic details are embedded in theattributes of the graph, which are described
elsewhere.

The remainder of this manual describes how to build an application usingGraphvizas a library in the
usual sense. The next section presents the basic technique for using theGraphvizcode. Since the other
approaches are merely ramifications and extensions of the basic approach, the section also serves as an
overview for all uses. Section 3 breaks each layout algorithm apart into its individual steps. With this
information, the application has the option of eliminatingcertain of the steps. For example, all of the layout
algorithms can layout edges as splines. If the application intends to draw all edges as line segments, it would
probably wish to avoid the spline computation, especially as it is moderately expensive in terms of time.
Section 2.3 explains how an application can invoke theGraphvizrenderers, thereby generating a drawing
of a graph in a concrete graphics format such aspng or PostScript. For an application intending to do its
own rendering, Section 5 recommends a technique which allows theGraphvizlibrary to handle all of the
bookkeeping details related to data structures and machine-dependent representations while the application
need only supply a few basic graphics functions. Section 7 discusses an auxiliary library for dealing with
graphs containing multiple connected components.

GraphvizDrawing Library Manual, April 27, 2009 7

2 Basic graph drawing

Figure 1 gives a template for the basic library use ofGraphviz, in this instance using thedot hierarchical
layout. (Appendix B provides the listing of the complete program.) Basically, the program creates a graph
using thegraph library, setting node and edge attributes to affect how the graph is to be drawn; calls the
layout code; and then uses the position information attached to the nodes and edges to render the graph.
The remainder of this section explores these steps in more detail.

Agraph_t* G;
GVC_t* gvc;

gvc = gvContext(); /* library function */
G = createGraph ();
gvLayout (gvc, G, "dot"); /* library function */
drawGraph (G);
gvFreeLayout(gvc, g); /* library function */
agclose (G); /* library function */
gvFreeContext(gvc);

Figure 1: Basic use

Here, we just note thegvc parameter. This is a handle to aGraphviz context, which contains drawing
and rendering information independent of the properties pertaining to a particular graph. For the present,
we view this an abstract parameter required for variousGraphvizfunctions. We will discuss it further in
Section 4.

2.1 Creating the graph

The first step in drawing a graph is to create it. To use theGraphviz layout software, the graph must be
created using thegraph library. Before any other function ingraph is called, an application must call the
library initialization functionaginit. This function is called bygvContext andgvParseArgs, so if
either of these is used, no additional call toaginit is necessary.1 Also, it is safe to make multiple calls to
aginit.

We can create a graph in one of two ways, usingagread or agopen. The former function takes a
FILE* pointer to a file open for reading. It is assumed the file contains the description of graphs using the
DOT language. Theagread function parses one graph at a time, returning a pointer to anattributed graph
generated from the input, orNULL if there are no more graphs or an error occurred.

The alternative technique is to callagopen.

Agraph_t* G = agopen(name, type);

The first argument is achar* giving the name of the graph; the second argument is anint value describing
the type of graph to be created. A graph can be directed or undirected. In addition, a graph can be strict,
i.e., have at most one edge between any pair of nodes, or non-strict, allowing an arbitrary number of edges
between two nodes. If the graph is directed, the pair of nodesis ordered, so the graph can have edges from
nodeA to nodeB as well as edges fromB to A. These four combinations are specified by the values in
Table 3. The return value is a new graph, with no nodes or edges.

Nodes and edges are created by the functionsagnode andagedge, respectively.

1See Section 2.3 for a description of occasions when the more general functionaginitlib should be called first.

GraphvizDrawing Library Manual, April 27, 2009 8

Graph Type Graph
AGRAPH Non-strict, undirected graph
AGRAPHSTRICT Strict, undirected graph
AGDIGRAPH Non-strict, directed graph
AGDIGRAPHSTRICT Strict, directed graph

Table 3: Graph types

Agnode_t *agnode(Agraph_t*, char*);
Agedge_t *agedge(Agraph_t*, Agnode_t*, Agnode_t*);

The first argument is the graph containing the node or edge. Note that if this is a subgraph, the node or edge
will also belong to all containing graphs. The second argument to agnode is the node’s name. This is a
key for the node within the graph. Ifagnode is called twice with the same name, the second invocation
will not create a new node but simply return a pointer to the previously created node with the given name.

Edges are created usingagedge by passing in the edge’s two nodes. If the graph is not strict,additional
calls toagedge with the same arguments will create additional edges between the two nodes. If the graph
is strict, extra calls will simply return the already existing edge. For directed graphs, the first and second
node arguments are taken to be the tail and head nodes, respectively. For undirected graph, they still play
this role for the functionsagfstout andagfstin, but when checking if an edge exists withagedge or
agfindedge, the order is irrelevant.

As suggested above, a graph can also contain subgraphs. These are created usingagsubg:

Agraph_t *agsubg(Agraph_t*, char*);

The first argument is the immediate parent graph; the second argument is the name of the subgraph.
Subgraphs play three roles inGraphviz. First, a subgraph can be used to represent graph structure,

indicating that certain nodes and edges should be grouped together. This is the usual role for subgraphs
and typically specifies semantic information about the graph components. In this generality, the drawing
software makes no use of subgraphs, but maintains the structure for use elsewhere within an application.

In the second role, a subgraph can provide a context for setting attributes. InGraphviz, these are often
attributes used by the layout and rendering functions. For example, the application could specify thatblue
is the default color for nodes. Then, every node within the subgraph will have color blue. In the context of
graph drawing, a more interesting example is:

subgraph {
rank = same; A; B; C;

}

This (anonymous) subgraph specifies that the nodesA, B andC should all be placed on the same rank if
drawn usingdot.

The third role for subgraphs combines the previous two. If the name of the subgraph begins with
"cluster", Graphvizidentifies the subgraph as a specialclustersubgraph. The drawing software2 will
do the layout of the graph so that the nodes belonging to the cluster are drawn together, with the entire
drawing of the cluster contained within a bounding rectangle.

We note here some important fields used in nodes, edges and graphs. Ifnp, ep andgp are pointers to
a node, edge and graph, respectively,np->name andnp->graph give the name of the node and the root
graph containing it,ep->tail andep->head give the tail and head nodes of the edge, andgp->root
gives the root graph containing the subgraph. For the root graph, this field will point to itself.

2if supported

GraphvizDrawing Library Manual, April 27, 2009 9

2.1.1 Attributes

In addition to the abstract graph structure provided by nodes, edges and subgraphs, theGraphvizlibraries
also support graph attributes. These are simply string-valued name/value pairs. Attributes are used to specify
any additional information which cannot be encoded in the abstract graph. In particular, the attributes are
heavily used by the drawing software to tailor the various geometric and visual aspects of the drawing.

Reading attributes is easily done. The functionagget takes a pointer to a graph component (node,
edge or graph) and an attribute name, and returns the value ofthe attribute for the given component. Note
that the function may return eitherNULL or a pointer to the empty string. The first value indicates that
the given attribute has not been defined for any component in the graph of the given kind. Thus, ifabc
is a pointer to a node andagget(abc,"color") returnsNULL, then no node in the root graph has a
color attribute. If the function returns the empty string, this usually indicates that the attribute has been
defined but the attribute value associated with the specifiedobject is the default for the application. So, if
agget(abc,"color") now returns"", the node is taken to have the default color. In practical terms,
these two cases are very similar. Using our example, whetherthe attribute value isNULL or"", the drawing
code will still need to pick a color for drawing and will probably use the default in both cases.

Setting attributes is a bit more complex. Before attaching an attribute to a graph component, the code
must first set up the default case. This is accomplished by a call to agraphattr, agnodeattr or
agedgeattr for graph, node or edge attributes, respectively. The typesof the 3 functions are identical.
They all take a graph and two strings as arguments, and returna representation of the attribute. The first
string gives the name of the attribute; the second supplies the default value, which must not beNULL. The
graph must be the root graph.

Once the attribute has been initialized, the attribute can be set for a specific component by calling

agset (void*, char*, char*)},

with a pointer to the component, the name of the attribute andthe value to which it should be set. The
attribute value must not beNULL.

For simplicity, thegraphlibrary provides the function

agsafeset(void*, char*, char*, char*)}

the first three arguments being the same as those ofagset. This function first checks that the named
attribute has been declared for the given graph component. If it has not, it declares the attribute, using its
last argument as the required default value. It then sets theattribute value for the specific component.

When an attribute is assigned a value, the graph library replicates the string. This means the application
can use a temporary string as the argument; it does not have tokeep the string throughout the application.
Each node, edge, and graph maintains its own attribute values. Obviously, many of these are the same
strings, so to save memory, the graph library uses a reference counting mechanism to share strings. An
application can employ this mechanism by using theagstrdup() function. If it does, it must also use the
agstrfree() function if it wishes to release the string.Graphvizsupports HTML-like tables as labels.
To allow these to be handled transparently, the library usesa special version of reference counted strings.
To create one of these, one usesagstrdup html() rather thanagstrdup(). Theagstrfree() is
still used to release the string.

Note that some attributes are replicated in the graph, appearing once as the usual string-valued attribute,
and also in an internal machine format such anint, double or some more structured type. An application
should only set attributes using strings andagset. The implementation of the layout algorithm may change
the machine-level representation or may change when it doesthe conversion from a string value. Hence,
the low-level interface cannot be relied on by the application. Also note that there is not a one-to-one
correspondence between string-valued attributes and internal attributes. A given string attribute might be

GraphvizDrawing Library Manual, April 27, 2009 10

encoded as part of some data structure, might be representedvia multiple fields, or may have no internal
representation at all.

In order to expedite the reading and writing of attributes for large graphs,Graphvizprovides a lower-
level mechanism for manipulating attributes which can avoid hashing a string. Attributes have a represen-
tation of typeAgsym_t. This is basically the value returned by the initializationfunctionsagraphattr,
etc. It can also be obtained by a call toagfindattr, which takes a graph component and an attribute
name. If the attribute has been defined, the function returnsa pointer to the correspondingAgsym_t value.
This can be used to directly access the corresponding attribute value, using the functionsagxget and
agxset. These are identical toagget andagset, respectively, except that instead of taking the attribute
name as the second argument, they use theindex field of theAgsym_t value to extract the attribute value
from an array.

Due to the nature of the implementation of attributes inGraphviz, an application should, if possible,
attempt to define and initialize all attributes before creating nodes and edges.

The drawing algorithms inGraphvizuse a large collection of attributes, giving the application a great
deal of control over the appearance of the drawing. For more detailed information on what the attributes
mean, the reader should consult the manualDrawing graphs with dot.

We can divide the attributes into those that affect the placement of nodes, edges and clusters in the
layout and those, such as color, which do not. Table 4 gives the node attributes which have the potential to
change the layout. This is followed by Tables 5, 6 and 7, whichdo the same for edges, graphs, and clusters.

Note that in some cases, the effect is indirect. An example ofthis is thenslimit attribute, which

Name Default Use
distortion 0.0 node distortion forshape=polygon
fixedsize false label text has no affect on node size
fontname Times-Roman font family
fontsize 14 point size of label
group name of node’s group
height .5 height in inches
label node name any string
margin 0.11,0.055 space between node label and boundary
orientation 0.0 node rotation angle
peripheries shape-dependent number of node boundaries
pin false fix node at itspos attribute
regular false force polygon to be regular
root indicates node should be used as root of a layout
shape ellipse node shape
shapefile † external EPSF or SVG custom shape file
sides 4 number of sides forshape=polygon
skew 0.0 skewing of node forshape=polygon
width .75 width in inches
z 0.0 † z coordinate for VRML output

Table 4: Geometric node attributes

potentially reduces the effort spent on network simplex algorithms to position nodes, thereby changing
the layout. Some of these attributes affect the initial layout of the graph in universal coordinates. Others
only play a role if the application uses theGraphvizrenderers (cf. Section 2.3), which map the drawing
into device-specific coordinates related to a concrete output format. For example,Graphvizonly uses the
center attribute, which specifies that the graph drawing should be centered within its page, when the
library generates a concrete representation. The tables distinguish these device-specific attributes by a†
symbol at the start of the Use column.

Tables 8, 9, 10 and 11 list the node, edge, graph and cluster attributes, respectively, that do not effect

GraphvizDrawing Library Manual, April 27, 2009 11

Name Default Use
constraint true use edge to affect node ranking
fontname Times-Roman font family
fontsize 14 point size of label
headclip true clip head end to node boundary
headport center position where edge attaches to head node
label edge label
len 1.0/0.3 preferred edge length
lhead name of cluster to use as head of edge
ltail name of cluster to use as tail of edge
minlen 1 minimum rank distance between head and tail
samehead tag for head node; edge heads with the same tag

are merged onto the same port
sametail tag for tail node; edge tails with the same tag are

merged onto the same port
tailclip true clip tail end to node boundary
tailport center position where edge attaches to tail node
weight 1 importance of edge

Table 5: Geometric edge attributes

the placement of components. Obviously, the values of theseattributes are not reflected in the position
information of the graph after layout. If the application handles the actual drawing of the graph, it must
decide if it wishes to use these attributes or not.

Among these attributes, some are used more frequently than others. A graph drawing typically needs to
encode various application-dependent properties in the representations of the nodes. This can be done with
text, using thelabel, fontname andfontsize attributes; with color, using thecolor,fontcolor,
fillcolorandbgcolor attributes; or with shapes, the most common attributes beingshape,height,
width, style, fixedsize,peripheries andregular,

Edges often display additional semantic information with thecolor andstyle attributes. If the edge
is directed, thearrowhead,arrowsize,arrowtail anddir attributes can play a role. Using splines
rather than line segments for edges, as determined by thesplines attribute, is done for aesthetics or clarity
rather than to convey more information.

There are also a number of frequently used attributes which affect the layout geometry of the nodes
and edges. These includecompound, len, lhead, ltail, minlen, nodesep, pin, pos, rank,
rankdir,ranksep andweight. Within this category, we should also mention thepack andoverlap
attributes, though they have a somewhat different flavor.

The attributes described thus far are used as input to the layout algorithms. There is a collection of
attributes, displayed in Table 12, which, by convention,Graphvizuses to specify the geometry of a layout.
After an application has usedGraphvizto determine position information, if it wants to write out the graph
in DOTwith this information, it should use the same attributes.

In addition to the attributes described above which have visual effect, there is a collection of attributes
used to supply identification information or web actions. Table 13 lists these.

2.2 Laying out the graph

Once the graph exists and the attributes are set, the application can pass the graph to one of theGraphviz
layout functions by a call togvLayout. As arguments, this function takes a pointer to aGVC t, a pointer
to the graph to be laid out, and the name of the desired layout algorithm. The algorithm names are the same

GraphvizDrawing Library Manual, April 27, 2009 12

Name Default Use
center false † center drawing onpage
clusterrank local may beglobal or none
compound false allow edges between clusters
concentrate false enables edge concentrators
defaultdist 1 + (

∑

e∈E
len)/|E|

√

|V | separation between nodes in different components
dim 2 dimension of layout
dpi 96/0 dimension of layout
epsilon .0001|V | or .0001 termination condition
fontname Times-Roman font family
fontpath list of directories to such for fonts
fontsize 14 point size of label
label † any string
margin † space placed around drawing
maxiter layout-dependent bound on iterations in layout
mclimit 1.0 scale factor for mincross iterations
mindist 1.0 minimum distance between nodes
mode major variation of layout
model shortpath model used for distance matrix
nodesep .25 separation between nodes, in inches
nslimit if set to f, bounds network simplex iterations by

(f)(number of nodes)when setting x-coordinates
ordering specify out or in edge ordering
orientation portrait † use landscape orientation ifrotate is not used

and the value islandscape
overlap true specify if and how to remove node overlaps
pack do components separately, then pack
packmode node granularity of packing
page † unit of pagination,e.g."8.5,11"
quantum if quantum > 0.0, node label dimensions will be

rounded to integral multiples ofquantum
rank same, min, max, source or sink
rankdir TB sense of layout, i.e, top to bottom, left to right, etc.
ranksep .75 separation between ranks, in inches.
ratio approximate aspect ratio desired,fill or auto
remincross If true and there are multiple clusters, re-run cross-

ing minimization
resolution synonym fordpi
root specifies node to be used as root of a layout
rotate † If 90, set orientation to landscape
searchsize 30 maximum edges with negative cut values to check

when looking for a minimum one during network
simplex

sep 0.1 factor to increase nodes when removing overlap
size maximum drawing size, in inches
splines render edges using splines
start random manner of initial node placement
voro margin 0.05 factor to increase bounding box when more space

is necessary during Voronoi adjustment
viewport †Clipping window

Table 6: Geometric graph attributes

GraphvizDrawing Library Manual, April 27, 2009 13

Name Default Use
fontname Times-Roman font family
fontsize 14 point size of label
label edge label
peripheries 1 number of cluster boundaries

Table 7: Geometric cluster attributes

Name Default Use
color black node shape color
fillcolor lightgrey node fill color
fontcolor black text color
layer overlay range all, id or id:id
nojustify false context for justifying multiple lines of text
style style options, e.g.bold, dotted, filled

Table 8: Decorative node attributes

Name Default Use
arrowhead normal style of arrowhead at head end
arrowsize 1.0 scaling factor for arrowheads
arrowtail normal style of arrowhead at tail end
color black edge stroke color
decorate if set, draws a line connecting labels with their

edges
dir forward/none forward, back, both, ornone
fontcolor black type face color
headlabel label placed near head of edge
labelangle -25.0 angle in degrees which head or tail label is rotated

off edge
labeldistance 1.0 scaling factor for distance of head or tail label from

node
labelfloat false lessen constraints on edge label placement
labelfontcolor black type face color for head and tail labels
labelfontname Times-Roman font family for head and tail labels
labelfontsize 14 point size for head and tail labels
layer overlay range all, id or id:id
nojustify false context for justifying multiple lines of text
style drawing attributes such asbold, dotted, or

filled
taillabel label placed near tail of edge

Table 9: Decorative edge attributes

GraphvizDrawing Library Manual, April 27, 2009 14

Name Default Use
bgcolor background color for drawing, plus initial fill color
charset "UTF-8" character encoding for text
fontcolor black type face color
labeljust centered left, right or center alignment for graph labels
labelloc bottom top or bottom location for graph labels
layers names for output layers
layersep "⁀:" separator characters used in layer specification
nojustify false context for justifying multiple lines of text
outputorder "breadthfirst" order in which to emit nodes and edges
pagedir BL traversal order of pages
samplepoints 8 number of points used to represent ellipses and cir-

cles on output
stylesheet XML stylesheet
truecolor determines truecolor or color map model for

bitmap output

Table 10: Decorative graph attributes

Name Default Use
bgcolor background color for cluster
color black cluster boundary color
fillcolor black cluster fill color
fontcolor black text color
labeljust centered left, right or center alignment for cluster labels
labelloc top top or bottom location for cluster labels
nojustify false context for justifying multiple lines of text
pencolor black cluster boundary color
style style options, e.g.bold, dotted, filled;

Table 11: Decorative cluster attributes

Name Use
bb bounding box of drawing or cluster
lp position of graph, cluster or edge label
pos position of node or edge control points
rects rectangles used in records
vertices points defining node’s boundary, if requested

Table 12: Output position attributes

Name Use
URL hyperlink associated with node, edge, graph or cluster
comment comments inserted into output
headURL URL attached to head label
headhref synonym forheadURL
headtarget browser window associated withheadURL
headtooltip tooltip associated withheadURL
href synonym forURL
tailURL URL attached to tail label
tailhref synonym fortailURL
tailtarget browser window associated withtailURL
tailtooltip tooltip associated withtailURL
target browser window associated withURL
tooltip tooltip associated withURL

Table 13: Miscellaneous attributes

GraphvizDrawing Library Manual, April 27, 2009 15

as those of the layout programs listed in Section 1. Thus,"dot" is used to invokedot, etc.3

The layout algorithm will do everything that the corresponding program would do, given the graph and
its attributes. This includes assigning node positions, representing edges as splines4, handling the special
case of an unconnected graph, plus dealing with various technical features such as preventing node overlaps.

There are two special layout engines available in the library: "nop" and"nop2". These correspond to
running theneatocommand with the flags-n and-n2, respectively. That is, they assume the input graph
already has position information stored for nodes and, in the latter case, some edges. They can be used to
route edges in the graph or perform other adjustments. Note that they expect the position information to be
stored aspos attributes in the nodes and edges. The application can do this itself, or use thedot renderer.

For example, if one wants to position the nodes of a graph using adot layout, but wants edges drawn as
line segments, one could use the following code. The first call to gvLayout lays out the graph using dot;

Agraph_t* G;
GVC_t* gvc;

/*
* Create gvc and graph

*/

gvLayout (gvc, G, "dot");
gvRender (gvc, G, "dot", NULL);
gvFreeLayout(gvc, G);
gvLayout (gvc, G, "nop");
gvRender (gvc, G, "png", stdout);
gvFreeLayout(gvc, G);
agclose (G);

Figure 2: Basic use

the first call togvRender attaches the computed position information to the nodes andedges. The second
call togvLayout adds straight-line edges to the already positioned nodes; the second call togvRender
outputs the graph inpng for onstdout.

2.3 Rendering the graph

Once the layout is done, the graph data structures contain the position information for drawing the graph.
The application needs to decide how to use this information.

To use the renderers supplied with theGraphvizsoftware, the application can call one of the library
functions

gvRender (GVC_t *gvc, Agraph_t* g, char *format, FILE *out);
gvRenderFilename (GVC_t *gvc, Agraph_t* g, char *format, char *filename);

The first and second arguments are a graphviz context handle and a pointer to the graph to be rendered. The
final argument gives, respecitively, a file stream open for writing or the name of a file to which the graph
should be written. The third argument names the renderer to be used, such as"ps", "png" or "dot".

3Usually, all of these algorithms are available. It is possible, however, that an application can arrange to have only a subset
made available.

4Line segments are represented as degenerate splines.

GraphvizDrawing Library Manual, April 27, 2009 16

The allowed strings are the same ones used with the-T flag when the layout program is invoked from a
command shell.

After a graph has been laid out usinggvLayout, an application can perform multiple calls to the
rendering functions. A typical instance might be

gvLayout (gvc, g, "dot");
gvRenderFilename (gvc, g, "png", "out.png");
gvRenderFilename (gvc, g, "cmap", "out.map");

in which the graph is laid out using thedotalgorithm, followed by PNG bitmap output and a corresponding
map file which can be used in a web browser.

Sometimes, an application will decide to do its own rendering. An application-supplied drawing routine,
such asdrawGraph in Figure 1 can then read this information, map it to display coordinates, and call
routines to render the drawing.

One simple way to do this is to use the position and drawing information as supplied by thedot or
xdot format (see Sections 1.1.1 and 1.1.2). To get this, the application can call the appropriate renderer,
passing a NULL stream pointer togvRender5 as in Figure 2. This will attach the information as string
attributes. The application can then useagget to read the attributes.

On the other hand, an application may desire to read the primitive data structures used by the algorithms
to record the layout information. In the remainder of this section, we describe in reasonable detail these data
structures. An application can use these values directly toguide its drawing. In some cases, for example,
with arrowheads attached tobezier values or HTML-like labels, it would be onerous for an application to
fully interpret the data. For this reason, if an applicationwishes to provide all of the graphics features while
avoiding the low-level details of the data structures, we suggest either usingxdot approach, described
above, or supplying its own renderer plug-in as described inSection 5.

In general, thegraph library allows an application to define specific data fields which are compiled
into the node, edge and graph structures. These have the names

• Agnodeinfo_t

• Agedgeinfo_t

• Agraphinfo_t

respectively. TheGraphvizlayout algorithms rely on a specific set of fields to record position and drawing
information, and therefore provide definitions for the three fields. Thus, the definitions of the information
fields are fixed by the layout library and cannot be altered by the application.6

These information structures occur as the field namedu in the node, edge and graph structure. The def-
inition of the information structures as defined by the layout code is given intypes.h, along with various
auxiliary types such aspoint or bezier. This file also provides macro expressions for accessing these
fields. Thus, ifnp is a node pointer, the width field can be read usingnp->u.width orND_width(np).
Edge and graph attributes follow the same convention, with prefixesED_ andGD_, respectively. We strongly

5This convention only works, and only makes sense, with thedot andxdot renderers. For other renders, a NULL stream will
cause output to be written onstdout.

6This is a limitation of thegraph library. We plan to remove this restriction by moving to a mechanism which allows arbitrary
dynamic extensions to the node, edge and graph structures. Meanwhile, if the application requires the addition of extrafields, it
can define its own structures, which should be extensions of the components of the information types, with the additionalfields
attached at the end. Then, instead of callingaginit(), it can use the more generalaginitlib(), and supply the sizes of its
nodes, edges and graphs. This will ensure that these components will have the correct sizes and alignments. The application can
then cast the genericgraph types to the types it defined, and access the additional fields.

GraphvizDrawing Library Manual, April 27, 2009 17

deprecate the former access method, for the usual reason of good programming style. By using the macros,
source code will not be affected by any changes to the how the value is provided.

Each node hasND coord i, ND width andND height attributes. The value ofND coord i gives
the position of the center of the node, in points.7 TheND width andND height attributes specify the
size of the bounding box of the node, in inches.

Edges, even if a line segment, are represented as B-splines or piecewise Bezier curves. Thespl attribute
of the edge stores this spline information. It has a pointer to an array of 1 or morebezier structures. Each
of these describes a single piecewise Bezier curve as well asassociated arrowhead information. Normally,
a singlebezier structure is sufficient to represent an edge. In some cases, however, the edge may need
multiple bezier parts, as when theconcentrate attribute is set, whereby mostly parallel edges are
represented by a shared spline. Of course, the application always has the possibility of drawing a line
segment connecting the centers of the edge’s nodes.

If a subgraph is specified as a cluster, the nodes of the cluster will be drawn together and the entire
subgraph is contained within a rectangle containing no other nodes. The rectangle is specified by thebb
attribute of the subgraph, the coordinates in points in the global coordinate system.

2.3.1 Drawing nodes and edges

With the position and size information described above, an application can draw the nodes and edges of
a graph. It could just use rectangles or circles for nodes, and represent edges as line segments or splines.
However, nodes and edges typically have a variety of other attributes, such as color or line style, which an
application can read from the appropriate fields inAgnodeinfo t andAgedgeinfo t and use in its
rendering.

Additional drawing information about the node depends mostly on the shape of the node. For record-
type nodes, whereND_shape(n)->name is "record" or "Mrecord", the node consists of a packed
collection of rectangles. In this case,ND_shape_info(n) can be cast tofield_t*, which describes
the recursive partition of the node into rectangles. The valueb of field_t gives the bounding rectangle
of the field, in points in the coordinate system of the node, i.e., where the center of the node is at the origin.

If ND_shape(n)->usershape is true, the shape is specified by the user. Typically, this isformat
dependent, e.g., the node might be specified by a GIF image, and we ignore this case for the present.

The final node class consists of those with polygonal shape8, which includes the limiting cases of circles,
ellipses, and none. In this case,ND_shape_info(n) can be cast topolygon_t*, which specifies the
many parameters (number of sides, skew and distortions, etc.) used to describe polygons, as well as the
points used as vertices. Note that the vertices are in inches, and are in the coordinate system of the node,
with the origin at the center of the node.

To handle a node’s shape, an application has two basic choices. It can implement the geometry for
each of the different shapes. Thus, it could see thatND_shape(n)->name is "box", and use the
ND coord i, ND width andND height attributes to draw rectangle at the given position with the given
width and height. A second approach would be to use the specification of the shape as stored internally in
theshape info field of the node. For example, given a polygonal node, itsND_shape_info(n) field
contains avertices field, mentioned above, which is an ordered list of all the vertices used to draw the
appropriate polygon, taking into account multiple peripheries. Again, if an application desires to be fully

7Theneatoandfdp layouts allow the graph to specify fixed positions for nodes.Unfortunately, some post-processing done in
Graphviztranslates the layout so that its lower-left corner is at theorigin. To recover the original coordinates, the application will
need to translate all positions by the vectorp0 − p, wherep0 andp are the input position and the final position of some node whose
position was fixed.

8This is not quite true but close enough for now.

GraphvizDrawing Library Manual, April 27, 2009 18

faithful in the rendering, it may be preferable to use thexdot information or to supply its own renderer
plugin.

For edges, eachbezier structure has, in addition to its list of control points, fields for specifying
arrowheads. Ifbp points to abezier structure and thebp->sflag field is true, there should be an
arrowhead attached to the beginning of the bezier. The fieldbp->sp gives the point where the nominal tip
of the arrowhead would touch the tail node. (If there is no arrowhead,bp->list[0]will touch the node.)
Thus, the length and direction of the arrowhead is determined by the vector going frombp->list[0] to
bp->sp. The actual shape and width of the arrowhead is determined bythearrowtailandarrowsize
attributes. Analogously, an arrowhead at the head node is specified bybp->eflag and the vector from
bp->list[bp->size-1] to bp->ep.

The label field (ND_label(n), ED_label(e), GD_label(g)) encodes any text label associated
with a graph object. Edges, graphs and clusters will occasionally have labels; nodes almost always have a
label, since the default label is the node’s name. The basic label string is stored in thetext field, while the
fontname,fontcolor andfontsize fields describe the basic font characteristics. In many cases, the
basic label string is further parsed, either into multiple,justified text lines, or as a nested box structure for
HTML-like labels or nodes of record shape. This informationis available in other fields.

2.4 Cleaning up a graph

Once all layout information is obtained from the graph, the resources should be reclaimed. To do this, the
application should call the cleanup routine associated with the layout algorithm used to draw the graph.
This is done by a call togvFreeLayout.

The example of Figure 1 demonstrates the case where the application is drawing a single graph. The
example given in Appendix C shows how cleanup might be done when processing multiple graphs.

The application can best determine when it should clean up. The example in the appendix performs
this just before a new graph is drawn, but the application could have done this much earlier, for example,
immediately after the graph is drawn usinggvRender. Note, though, that layout information is destroyed
during cleanup. If the application needs to reuse this data,for example, to refresh the display, it should
delay calling the cleanup function, or arrange to copy the layout data elsewhere. Also, in the simplest case
where the application just draws one graph and exits, there is no need to do cleanup at all, though this is
sometimes considered poor programming style.

A given graph can be laid out multiple times. The application, however, must clean up the earlier
layout’s information with a call togvFreeLayout before invoking a new layout function. An example of
this was given in Figure 2.

Once the application is totally done with a graph, it should call agclose to close the graph and reclaim
the remaining resources associated with it.

3 Inside the layouts

EachGraphvizlayout algorithm consists of multiple steps, some of which are optional. As the only entry
point in theGraphvizlibrary for laying out a graph is the functiongvLayout, the control of which steps
are used is determined by graph attributes, in the same way this is controlled when passing a graph to one
of the layout programs. In this section, we provide a high-level description of the layout steps, and note the
relevant attributes.

Here, we will assume that the graph is connected. All of the layouts handle unconnected graphs. Some-
times, though, an application may not want to use the built-in technique. For these cases,Graphvizprovides
tools for decomposing a graph, and then combining multiple layouts. This is described in Section 7.

GraphvizDrawing Library Manual, April 27, 2009 19

In all of the algorithms, the first step is to call a layout-specific initialization function. These func-
tions initialize the graph for the particular algorithm. This will first call common routines to set up basic
data structures, especially those related to the final layout results and code generation. In particular, the
size and shape of nodes will have been analyzed and set at thispoint, which the application can access
via theND width, ND height, ND ht, ND lw, ND rw, ND shape, ND shape info andND label
attributes. Initialization will then establish the data structures specific to the given algorithm. Both the
generic and specific layout resources are released when the corresponding cleanup function is called in
gvFreeLayout (cf. Section 2.4).

By default, the layout algorithms position the edges as wellas the nodes of the graph. As this may be
expensive to compute and irrelevant to an application, an application may decide to avoid this. This can be
achieved by setting the graph’ssplines attribute to the empty string"".

The algorithms all end with a postprocessing step. The role of this is to do some final tinkering with
the layout, still in layout coordinates. Specifically, the function rotates the layout fordot (if rankdir is
set), attaches the root graph’s label, if any, and normalizes the drawing so that the lower left corner of its
bounding box is at the origin.

Except for dot, the algorithms also provide a node’s position, in inches, in the array give byND pos.

3.1 dot

Thedot algorithm produces a ranked layout of a graph respecting edge directions if possible. It is particu-
larly appropriate for displaying hierarchies or directed acyclic graphs. The basic layout scheme is attributed
to Sugiyama et al.[STT81] The specific algorithm used bydot follows the steps described by Gansner et
al.[GKNV93]

The steps in thedot layout are:

initialize
rank
mincross
position
sameports
splines
compoundEdges

After initialization, the algorithm assigns each node to a discrete rank (rank) using an integer program
to minimize the sum of the (discrete) edge lengths. The next step (mincross) rearranges nodes within
ranks to reduce edge crossings. This is followed by the assignment (position) of actual coordinates to
the nodes, using another integer program to compact the graph and straighten edges. At this point, all nodes
will have a position set in thecoord attribute. In addition, the bounding boxbb attribute of all clusters are
set.

Thesameports step is an addition to the basic layout. It implements the feature, based on the edge
attributes"samehead" and"sametail", by which certain edges sharing a node all connect to the node
at the same point.

Edge representations are generated in thesplines step. At present,dot draws all edges as B-splines,
though some edges will actually be the degenerate case of a line segment.

Although dot supports the notion of cluster subgraphs, its model does notcorrespond to general com-
pound graphs. In particular, a graph cannot have edges connecting two clusters, or a cluster and a node. The
layout can emulate this feature. Basically, if the head and tail nodes of an edge lie in different, non-nested
clusters, the edge can specify these clusters as a logical head or logical tail using thelhead or ltail

GraphvizDrawing Library Manual, April 27, 2009 20

attribute. The spline generated insplines for the edge can then be clipped to the bounding box of the
specified clusters. This is accomplished in thecompoundEdges step.

3.2 neato

The layout computed byneatois specified by a virtual physical model, i.e., one in which nodes are treated
as physical objects influenced by forces, some of which arisefrom the edges in the graph. The layout is
then derived by finding positions of the nodes which minimizethe forces or total energy within the system.
The forces need not correspond to true physical forces, and typically the solution represents some local
minimum. Such layouts are sometimes referred to as symmetric, as the principal aesthetics of such layouts
tend to be the visualization of geometric symmetries withinthe graph. To further enhance the display of
symmetries, such drawings tend to use line segments for edges.

The model used byneatocomes from Kamada and Kawai[KK89], though it was first introduced by
Kruskal and Seely[KS80] in a different format. The model assumes there is a spring between every pair of
vertices, each with an ideal length. The ideal lengths are a function of the graph edges. The layout attempts
to minimize the energy in this system.

initialize
position
adjust
splines

As usual, the layout starts with an initialization step. Theactual layout is parameterized by themode
andmodel attributes. The mode attribute determines how the optimization problem is solved, either by the
default, stress majorization[GKN04] mode, (mode="major"), or the gradient descent technique proposed
by Kamada and Kawai[KK89] (mode="KK"). The latter mode is typically slower than the former, and
introduces the possibility of cycling. It is maintained solely for backward compatibility.

The model indicates how the ideal distances are computed between all pairs of nodes. By default,neato
uses a shortest path model (model="shortpath"), so that the length of the spring between nodesp and
q is the length of the shortest path between them in the graph. Note that the shortest path calculation takes
into account the lengths of edges as specified by the"len" attribute, with one inch being the default.

If mode="KK" and the graph attributepack is false,neatosets the distance between nodes in separate
connected components to1.0 + Lavg ·

√

|V|, whereLavg is the average edge length and|V| is the number
of nodes in the graph. This supplies sufficient separation between components so that they do not overlap.
Typically, the larger components will be centrally located, while smaller components will form a ring around
the outside.

In some cases, an application may decide to use the circuit model (model="circuit"), a model
based on electrical circuits as first proposed by Cohen[Coh87]. In this model, the spring length is derived
from resistances using Kirchoff’s law. This means that the more paths betweenp andq in the graph, the
smaller the spring length. This has the effect of pulling clusters closer together. We note that this approach
only works if the graph is connected. If the graph is not connected, the layout automatically reverts to the
shortest path model.

The third model is the subset model (model="subset"). This sets the length of each edge to be the
number of nodes that are neighbors of exactly one of the end points, and then calculates remaining distances
using shortest paths. This helps to separate nodes with highdegree.

The basic algorithm used byneatoperforms the layout assuming point nodes. Since in many cases, the
final drawing uses text labels and various node shapes, the drawing ends up with many nodes overlapping
each other. For certain uses, the effect is desirable. If not, the application can use theadjust step to
reposition the nodes to eliminate overlaps. This is controlled by the graph attribute"overlap".

GraphvizDrawing Library Manual, April 27, 2009 21

With nodes positioned, the algorithm proceeds to draw the edges using itssplines function. By
default, edges are drawn as line segments. If, however, the"splines" graph attribute is set to true, the
edges will be constructed as splines[DGKN97], routing themaround the nodes. Topologically, the spline
follows the shortest path between two nodes while avoiding all others. Clearly, for this to work, there can be
no node overlaps. If overlaps exist, edge creation reverts back to line segments. When this function returns,
the positions of the nodes will be recorded in theircoords attribute, in points.

The programmer should be aware of certain limitations and problems with theneatoalgorithm. First,
as noted above, ifmode="KK", it is possible for the minimization technique used byneatoto cycle, never
finishing. At present, there is no way for the library to detect this, though once identified, it can easily be
fixed by simply picking another initial position. Second, although multiedges affect the layout, the spline
router does not yet handle them. Thus, two edges between the same nodes will receive the same spline.
Finally, neatoprovides no mechanism for drawing clusters. If clusters arerequired, one should use thefdp
algorithm, which belongs to the same family asneatoand is described next.

3.3 fdp

The fdp layout is similar in appearance toneatoand also relies on a virtual physical model, this time
proposed by Fruchterman and Reingold[FR91]. This model uses springs only between nodes connected
with an edge, and an electrical repulsive force between all pairs of nodes. Also, it achieves a layout by
minimizing the forces rather than energy of the system.

Unlike neato, fdp supports cluster subgraphs. In addition, it allows edges between clusters and nodes,
and between cluster and clusters. At present, an edge from a cluster cannot connect to a node or cluster with
the cluster.

initialize
position
splines

The layout scheme is fairly simple: initialization; layout; and a call to route the edges. Infdp, because
it is necessary to keep clusters separate, the removal of overlaps is (usually) obligatory.

3.4 twopi

The radial layout algorithm represented bytwopi is conceptually the simplest inGraphviz. Following an
algorithm described by Wills[Wil97], it takes a node specified as the center of the layout and the root of the
generated spanning tree. The remaining nodes are placed on aseries of concentric circles about the center,
the circle used corresponding to the graph-theoretic distance from the node to the center. Thus, for example,
all of the neighbors of the center node are placed on the first circle around the center. The algorithm allocates
angular slices to each branch of the induced spanning tree toguarantee enough space for the tree on each
ring. At present, the algorithm does not attempt to visualize clusters.

initialize
position
adjust
splines

As usual, the layout commences by initializing the graph. This is followed by theposition step,
which is parameterized by the central node, specified by the graph’sroot attribute. If unspecified, the

GraphvizDrawing Library Manual, April 27, 2009 22

algorithm will select some “most central” node, i.e., one whose minimum distance from a leaf node is
maximal.

As with neato, the layout allows anadjust step to eliminate node-node overlaps. Again as withneato,
the call tosplines computes drawing information for edges. See Section 3.2 formore details.

3.5 circo

The circo algorithm is based on the work of Six and Tollis[ST99, ST00],as modified by Kaufmann and
Wiese[KW]. The nodes in each biconnected component are placed on a circle, with some attempt to mini-
mize edge crossings. Then, by considering each component asa single node, the derived tree is laid out in
a similar fashion totwopi, with some component considered as the root node.

initialize
position
splines

As with fdp, the scheme is very simple. By construction, thecirco layout avoids node overlaps, so no
adjust step is necessary.

4 TheGraphvizcontext

Up to now, we have used aGraphvizcontextGVC t without considering its purpose. As suggested earlier,
this value is used to store various layout information that is independent of a particular graph and its at-
tributes. It holds the data associated with plugins, parsed-command lines, script engines, and anything else
with a scope potentially larger than one graph, up to the scope of the application. In addition, it maintains
lists of the available layout algorithms and renderers; it also records the most recent layout algorithm applied
to a graph. It can be used to specify multiple renderings of a given graph layout into different associated
files. It is also used to store various global information used during rendering.

There should be just oneGVC t created for the entire duration of an application. A singleGVC t value
can be used with multiple graphs, though with only one graph at a time. In addition, ifgvLayout() was
invoked for a graph andGVC t, thengvFreeLayout() should be called before usinggvLayout()
again, even on the same graph.

An instance of aGVC t can be created by a call to

extern GVC_t *gvNEWcontext(char **info, char *user);

The first argument is an array of three character pointers providing version information; see Section 4.1
below for a description of this data. The second argument is astring giving a name for the user. If desired,
the application can call the library functiongvUsername() to obtain this value. These strings are stored
in theGVC t and used in various messages and comments.

For convenience, theGraphvizlibrary provides a simple way to create a context:

extern GVC_t *gvContext();

which is what we have used in the examples shown here. This uses version information created when
Graphvizwas built, plus the value returned bygvUsername().

One can initialize aGVC t to record a list of graphs, layout algorithms and renderers.To do this, the
application should call the functiongvParseArgs:

extern void gvParseArgs(GVC_t* gvc, int argc, char* argv[]);

GraphvizDrawing Library Manual, April 27, 2009 23

This function takes the context value, plus an array of strings using the same conventions as the parameters
tomain function in a C program. In particular,argc should be the number of values inargv. If argv[0]
is the name of one of the layout algorithms, this will be boundto theGVC t value and used at layout time.
The remainingargv values, if any, are interpreted exactly like the allowed command line flags for any
Graphvizprogram. Thus,"-T" can be used to set the output type, and"-o" can be used to specify the
output files.

For example, the application can use a synthetic argument list

GVC_t* gvc = gcContext();
char* args[] = {

"dot",
"-Tgif", /* gif output */
"-oabc.gif" /* output to file abc.gif */

};
gvParseArgs (gvc, sizeof(args)/sizeof(char*), args);

to specify a dot layout inGIF output written to the fileabc.gif. Another approach is to use a program’s
actual argument list, after removing flags not handled byGraphviz.

Most of the information is stored in aGVC t value for use during rendering. However, if theargv
array contains non-flag arguments, i.e., strings after the first not beginning with"-", these are taken
to be input files defining a stream of graphs to be drawn. These graphs can be accessed by calls to
gvNextInputGraph.

Once theGVC t has been initialized this way, the application can callgvNextInputGraph to get
each input graph in sequence, and then invokegvLayoutJobs andgvRenderJobs to do the specified
layouts and renderings. See Appendix C for a typical exampleof this approach.

We note thatgvLayout basically attaches the graph and layout algorithm to theGVC t, as would be
done bygvParseArgs, and then invokesgvLayoutJobs. A similar remark holds forgvRender and
gvRenderJobs.

4.1 Application-specific data

It is sometimes useful to supply version information. For example, some renderers inGraphvizthe library
version used to create the output file. To do this, they rely onthe application providing an array

extern char* Info[3];

giving the desired version information. The three strings should be the name of the application, the version
of the application, and a build date. For example,dot might provide

char *Info[] = {
"dot", /* Program */
"1.8.10", /* Version */
"16 Dec 2006" /* Build Date */

};

5 Graphics renderers

All graph output done inGraphvizgoes through a renderer with the typegvrender engine t, used in
the call togvRender. In addition to the renderers which are part of the library, an application can provide
its own, allowing it to specialize or control the output as necessary. See Section 6.1 for further details.

GraphvizDrawing Library Manual, April 27, 2009 24

As in the layout phase invoked bygvLayout, all control over aspects of rendering are handled via
graph attributes. For example, the attributeoutputorder determines whether all edges are drawn before
any nodes, or all nodes are drawn before any edges.

Before describing the renderer functions in detail, it may be helpful to give an overview of how output
is done. Output can be viewed as a hierarchy of document components. At the highest level is the job,
representing an output format and target. Bound to a job might be multiple graphs, each embedded in some
universal space. Each graph may be partitioned into multiple layers as determined by a graph’slayers
attribute, if any. Each layer may be divided into a 2-dimensional array of pages. A page will then contain
nodes, edges, and clusters. Each of these may contain an HTMLanchor. During rendering, each component
is reflected in paired calls to its correspondingbegin ... andend ... functions. The layer and
anchor components are omitted if there is only a single layeror the enclosing component has no browser
information.

Figure 3 lists the names and type signatures of the fields ofgv render engine t, which are used to
emit the components described above.9 All of the functions take aGVJ t* value, which contains various
information about the current rendering, such as the outputstream, if any, or the device size and resolution.
Section 5.1 describes this data structure.

Most of the functions handle the nested graph structure. Allgraphics output is handled by thetextpara,
ellipse,polygon,beziercurve, andpolyline functions. The relevant drawing information such
as color and pen style is available through theobj field of theGVJ t* parameter. This is described in Sec-
tion 5.2. Font information is passed with the text.

We note that, inGraphviz, each node, edge or cluster in a graph has a uniqueid field, which can be
used as a key for storing and accessing the object.

In the following, we describe the functions in more detail, though many are self-explanatory. All posi-
tions and sizes are in points.

begin job(job) Called at the beginning of all graphics output for a graph, which may entail drawing
multiple layers and multiple pages.

end job(job) Called at the end of all graphics output for graph. The outputstream is still open, so the
renderer can append any final information to the output.

begin graph(job) Called at the beginning of drawing a graph. The actual graph is available as
job->obj->u.g.

end graph(job) Called when the drawing of a graph is complete.

begin layer(job,layerName,n,nLayers) Called at the beginning of each layer, only ifnLayers >
0. ThelayerName parameter is the logical layer name given in thelayers attribute. The layer
has indexn out ofnLayers, starting from 0.

end layer(job) Called at the end of drawing the current layer.

begin page(job) Called at the beginning of a new output page. A page will contain a rectangular
portion of the drawing of the graph. The valuejob->pageOffset gives the lower left corner of
the rectangle in layout coordinates. The pointjob->pagesArrayElem is the index of the page in
the array of pages, with the page in the lower left corner indexed by (0,0). The valuejob->zoom
provides a scale factor by which the drawing should be scaled. The valuejob->rotation, if
non-zero, indicates that the output should be rotated by90◦ counterclockwise.

9Any types mentioned in this section are either described in this section or in Appendix E.

GraphvizDrawing Library Manual, April 27, 2009 25

void (*begin job) (GVJ t*);
void (*end job) (GVJ t*);
void (*begin graph) (GVJt*);
void (*end graph) (GVJt*);
void (*begin layer) (GVJt*, char*, int, int);
void (*end layer) (GVJt*);
void (*begin page) (GVJt*);
void (*end page) (GVJt*);
void (*begin cluster) (GVJt*, char*, long);
void (*end cluster) (GVJt*);
void (*begin nodes) (GVJt*);
void (*end nodes) (GVJt*);
void (*begin edges) (GVJt*);
void (*end edges) (GVJt*);
void (*begin node) (GVJt*, char*, long);
void (*end node) (GVJt*);
void (*begin edge) (GVJt*, char*, bool, char*, long);
void (*end edge) (GVJt*);
void (*begin anchor) (GVJt*, char*, char*, char*);
void (*end anchor) (GVJt*);
void (*textpara) (GVJt*, pointf, textparat*);
void (*resolvecolor) (GVJ t*, gvcolor t*);
void (*ellipse) (GVJt*, pointf*, int);
void (*polygon) (GVJt*, pointf*, int, int);
void (*beziercurve) (GVJt*, pointf*, int, int, int, int);
void (*polyline) (GVJ t*, pointf*, int);
void (*comment) (GVJt*, char*);

Figure 3: Interface for a renderer

end page(job) Called when the drawing of a current page is complete.

begin cluster(job) Called at the beginning of drawing a cluster subgraph. The actual cluster is
available asjob->obj->u.sg.

end cluster(job) Called at the end of drawing the current cluster subgraph.

begin nodes(job) Called at the beginning of drawing the nodes on the current page. Only called if
the graph attributeoutputorderwas set to a non-default value.

end nodes(job) Called when all nodes on a page have been drawn. Only called ifthe graph attribute
outputorderwas set to a non-default value.

begin edges(job) Called at the beginning of drawing the edges on the current page. Only called if
the graph attributeoutputorderwas set to a non-default value.

end edges() Called when all edges on the current page are drawn. Only called if the graph attribute
outputorderwas set to a non-default value.

begin node(job) Called at the start of drawing a node. The actual node is available asjob->obj->u.n.

GraphvizDrawing Library Manual, April 27, 2009 26

end node(job) Called at the end of drawing the current node.

begin edge(job) Called at the start of drawing an edge. The actual edge is available asjob->obj->u.e.

end edge(job) Called at the end of drawing the current edge.

begin anchor(job,href,tooltip,target) Called at the start of an anchor context associated
with the current node, edge, or graph, or its label, assumingthe graph object or its label has aURL or
href attribute. Thehref parameter gives the associated href, whiletooltip andtarget supply
any tooltip or target information. If the object has no tooltip, its label will be used. If the object has
no target attribute, this parameter will beNULL.

If the anchor information is attached to a graph object, thebegin anchor andend anchor calls
enclose thebegin ... andend ... calls on the object. If the anchor information is attached to
part of an object’s label, thebegin anchor andend anchor calls enclose the rendering of that
part of the label plus any subparts.

end anchor(job) Called at the end of the current anchor context.

textpara(job, p, txt) Draw text at pointp using the specified font and fontsize and color. The
txt argument provides the text stringtxt->str, stored in UTF-8, a calculated width of the string
txt->width and the horizontal alignmenttxt->just of the string in relation top. The values
txt->fontname andtxt->fontname give the desired font name and font size, the latter in
points.

The base line of the text is given byp.y. The interpretation ofp.x depends upon the value of
txt->just. Basically,p.x provides the anchor point for the alignment.

txt->just p.x
’n’ Center of text
’l’ Left edge of text
’r’ Right edge of text

The leftmost x coordinate of the text, the parameter most graphics systems use for text placement, is
given byp.x + j * txt->width, wherej is 0.0 (-0.5,-1.0) iftxt->just is ’l’(’n’,’r’),
respectively. This representation allows the renderer to accurately compute the point for text place-
ment that is appropriate for its format, as well as use its ownmechanism for computing the width of
the string.

resolve color(job, color) Resolve a color. Thecolor parameter points to a color representa-
tion of some particular type. The renderer can use this information to resolve the color to a represen-
tation appropriate for it. See Section 5.3 for more details.

ellipse(job, ps, filled) Draw an ellipse with center atps[0], with horizontal and vertical
half-axesps[1].x - ps[0].x andps[1].y - ps[0].y using the current pen color and line
style. Iffilled is non-zero, the ellipse should be filled with the current fillcolor.

polygon(job, A, n, filled) Draw a polygon with then vertices given in the arrayA, using the
current pen color and line style. Iffilled is non-zero, the polygon should be filled with the current
fill color.

GraphvizDrawing Library Manual, April 27, 2009 27

beziercurve(job, A, n, arrow at start, arrow at end, filled) Draw a B-spline with
then control points given inA. This will consist of(n− 1)/3 cubic Bezier curves. The spline should
be drawn using the current pen color and line style. If the renderer has specified that it does not want
to do its own arrowheads (cf. Section 6.1), the parametersarrow at start andarrow at end
will both be 0. Otherwise, ifarrow at start (arrow at end) is true, the function should draw
an arrowhead at the first (last) point ofA. If filled is non-zero, the bezier should be filled with the
current fill color.

polyline(job,A,n) Draw a polyline with then vertices given in the arrayA, using the current pen
color and line style.

comment(job, text) Emit text comments related to a graph object. For nodes, calls will pass the
node’s name and anycomment attribute attached to the node. For edges, calls will pass a string
description of the edge and anycomment attribute attached to the edge. For graphs and clusters, a
call will pass a anycomment attribute attached to the object.

Although access to the graph object being drawn is availablethrough theGVJ t value, a renderer can
often perform its role by just implementing the basic graphics operations. It need have no information about
graphs or the relatedGraphvizdata structures. Indeed, a particular renderer need not define any particular
rendering function, since a given entry point will only be called if non-NULL.

5.1 TheGVJ t data structure

We now describe some of the more important fields in theGVJ t structure, concentrating on those regarding
output. There are additional fields relevant to input and GUIs.

common This points to various information valid throughout the duration of the application usingGraphviz.
In particular,common->user gives the user name associated to the relatedGVC t value (see Sec-
tion 4), andcommon->info containsGraphvizversion information, as described in Section 4.1.

output file TheFILE* value for an open stream on which the output should be written, if relevant.

pagesArraySize The size of the array of pages in which the graph will be output, given as apoint.
If pagesArraySize.x or pagesArraySize.y is greater than one, this indicates that a page
size was set and the graph drawing is too large to be printed ona single page. Page (0,0) is the page
containing the bottom, lefthand corner of the graph drawing; page (1,0) will contain that part of the
graph drawing to the right of page (0,0); etc.

bb The bounding box of the layout in the universal space in points. It has typeboxf.

boundingBox The bounding box of the layout in the device space in device coordinates. It has typebox.

layerNum The current layer number.

numLayers The total number of layers.

pagesArrayElem The row and column of the current page.

pageOffset The origin of the current page in the universal space in points.

zoom Factor by which the output should be scaled.

rotation Indicates whether or not the rendering should be rotated.

GraphvizDrawing Library Manual, April 27, 2009 28

obj Information related to the current object being rendered. This is a pointer of a value of typeobj state t.
See Section 5.2 for more details.

5.2 Inside theobj state t data structure

A value of typeobj state t encapsulates various information pertaining to the current object being
rendered. In particular, it provides access to the current object, and provides the style information for any
rendering operation. Figure 4 notes some of the more useful fields in the structure.

obj type type;
union{

grapht *g;
grapht *sg;
nodet *n;
edget *e;

} u;
gvcolor t pencolor;
gvcolor t fillcolor;
pen type pen;
double penwidth;
char *url;
char *tailurl;
char *headurl;
char *tooltip;
char *tailtooltip;
char *headtooltip;
char *target;
char *tailtarget;
char *headtarget;

Figure 4: Some fields inobj state t

type and u Thetype field indicates what kind of graph object is currently being rendered. The possible
values areROOTGRAPH OBJTYPE, CLUSTER OBJTYPE, NODE OBJTYPE andEDGE OBJTYPE,
indicating the root graph, a cluster subgraph, a node and an edge, respectively. A pointer to the actual
object is available via the subfieldsu.g, u.sg, u.n andu.e, respectively, of the unionu.

pencolor Thegvcolor t value indicating the color used to draw lines, curves and text.

pen The style of pen to be used. The possible values arePEN NONE, PEN DOTTED, PEN DASHED and
PEN SOLID.

penwidth The size of the pen, in points. Note that, by convention, a value of 0 indicates using the smallest
width supported by the output format.

fillcolor Thegvcolor t value indicating the color used to fill closed regions.

Note that font information is delivered as part of thetextpara t value passed to thetextpara function.
As for the url, tooltip and target fields, these will point to the associated attribute value of the current

graph object, assuming it is defined and that the renderer support map, tooltips, and targets, respectively (cf.
Section 6.1).

GraphvizDrawing Library Manual, April 27, 2009 29

5.3 Color information

There are five ways in which a color can be specified inGraphviz: RGB + alpha, HSV + alpha, CYMK,
color index, and color name. In addition, the RGB + alpha values can be stored as bytes, words or doubles.

A color value inGraphvizhas the typegvcolor t, containing two fields: a unionu, containing the
color data, and thetype field, indicating which color representation is used in the union. Table 14 describes
the allowed color types, and the associated union field.

Type Description Field
RGBA BYTE RGB + alpha format represented as 4 bytes from 0 to 255u.rgba
RGBA WORD RGB + alpha format represented as 4 words from 0 to

65535
u.rrggbbaa

RGBA DOUBLE RGB + alpha format represented as 4 doubles from 0 to 1u.RGBA
HSVA DOUBLE HSV + alpha format represented as 4 doubles from 0 to 1u.HSVA
CYMK BYTE CYMK format represented as 4 bytes from 0 to 255 u.cymk
COLOR STRING text name u.string
COLOR INDEX integer index u.index

Table 14: Color type representations

Before a color is used in rendering,Graphvizwill process a color description provided by the input
graph into a form desired by the renderer. This is three step procedure. First,Graphvizwill see if the
color matches the renderer’s known colors, if any. If so, thecolor representation isCOLOR STRING.
Otherwise, the library will convert the input color description into the renderer’s preferred format. Finally,
if the renderer also provides aresolve color function,Graphvizwill then call that function, passing a
pointer to the current color value. The renderer then has theopportunity to adjust the value, or convert it into
another format. In a typical case, if a renderer uses a color map, it may request RGB values as input, and
then store an associated color map index using theCOLOR INDEX format. If the renderer does a conversion
to another color type, it must reset thetype field to indicate this. It is this last representation which will
be passed to the renderer’s drawing routines. The renderer’s known colors and preferred color format are
described in Section 6.1 below.

6 Adding Plug-ins

The Graphviz framework allows the programmer to use plug-ins to extend the system in several ways.
For example, the programmer can add new graph layout enginesalong with new renderers and their re-
lated functions. Table 15 describes the plug-in APIs supported by Graphviz. Each plug-in is defined

Kind Functions Features Description
API render gvrender engine t gvrender features t Functions for rendering a graph
API device gvdevice engine t - Functions for initializing and terminat-

ing a device
API loadimage gvloadimage engine t - Functions for converting from one im-

age format to another
API layout gvlayout engine t gvlayout features t Functions for laying out a graph
API textlayout gvtextlayout engine t - Functions for resolving font names and

text size

Table 15: Plug-in API types

by an engine structure containing its function entry points, and a features structure specifying features

GraphvizDrawing Library Manual, April 27, 2009 30

supported by the plug-in. Thus, a renderer is defined by values of typegvrender engine t and
gvrender features t.

Once all of the plug-ins of a given kind are defined, they should be gathered into a 0-terminated array
of element typegvplugin installed t, whose fields are shown in Figure 5. The fields have the

int id;
char *type;
int quality;
void *engine;
void *features;

Figure 5: Plug-in fields

following meanings.

id Identifier for a given plug-in within a given package and witha given API kind. Note that theid need
only be unique within its plug-in package, as these packagesare assumed to be independent.

type Name for a given plug-in, used during plug-in lookup.

quality An arbitrary integer used for ordering plug-ins with the sametype. Plug-ins with larger values
will be chosen before plug-ins with smaller values.

engine Points to the related engine structure.

features Points to the related features structure.

As an example, suppose we wish to add various renderers for bitmap output. A collection of these might
be combined as follows.

gvplugin_installed_t render_bitmap_types[] = {
{0, "jpg", 1, &jpg_engine, &jpg_features},
{0, "jpeg", 1, &jpg_engine, &jpg_features},
{1, "png", 1, &png_engine, &png_features},
{2, "gif", 1, &gif_engine, &gif_features},
{0, NULL, 0, NULL, NULL}

};

Note that this allows"jpg" and"jpeg" to refer to the same renderers. For the plug-in kinds withouta
features structure, the feature pointer in itsgvplugin installed t should be NULL.

All of the plug-ins of all API kinds should then be gathered into a 0-terminated array of element type
gvplugin api t. For each element, the first field indicates the kind of API, and the second points to the
array of plug-ins described above (gvplugin installed t).

Continuing our example, if we have supplied, in addition to the bitmap rendering plug-ins, plug-ins to
render VRML, and plug-ins to load images, we would define

gvplugin_api_t apis[] = {
{API_render, &render_bitmap_types},
{API_render, &render_vrml_types},
{API_loadimage, &loadimage_bitmap_types},
{0, 0},

};

GraphvizDrawing Library Manual, April 27, 2009 31

Hererender vrml types andrender vrml types are also 0-terminated arrays of element type
gvplugin installed t. Note that there can be multiple items of the same API kind.

A final definition is used to attach a name to the package of all the plug-ins. This is done using a
gvplugin library t structure. Its first field is achar* giving the name of the package. The second
field is agvplugin api t* pointing to the array described above. The structure itselfmust be named
gvplugin name LTX library, wherenameis the name of the package as defined in the first field.

For example, if we have decided to call our package"bitmap", we could use the following definition:

gvplugin_library_t gvplugin_bitmap_LTX_library = { "bitmap", apis };

To finish the installation of the package, it is necessary to create a dynamic library containing the
gvplugin library t value and all of the functions and data referred by it, eitherdirectly or indi-
rectly. The library must be namedgvplugin name, where againname is the name of the package.
The actual filename of the library will be system-dependent.For example, on Linux systems, our library
gvplugin bitmap would have filenamelibgvplugin bitmap.so.3.

In most cases,Graphviz is built with a plug-in version number. This number must be included in
the library’s filename, following any system-dependent conventions. The number is given as the value of
plugins in the filelibgvc.pc, which can be found in the directorylib/pkgconfigwhereGraphviz
was installed. In our example, the “3” in the library’s filename gives the version number.

Finally, the library must be installed in theGraphviz library directory, anddot -c must be run to
add the package to theGraphvizconfiguration. Note that both of these steps typically assume that one has
installer privileges.10

In the remainder of this section, we shall look at the first three types of plug-in APIs in more detail.

6.1 Writing a renderer plug-in

A renderer plug-in has two parts. The first consists of a structure of typegvrender engine t defining
the renderer’s actions, as described in Section 5. Recall that any field may contain a NULL pointer.

For the second part, the programmer must provide a structureof typegvrender features t. This
record providesGraphvizwith information about the renderer. Figure 6 list the fieldsinvolved. Some of the

int flags;
double defaultmargin;
double defaultpad;
pointf defaultpagesize;
pointf defaultdpi;
char **knowncolors;
int sz knowncolors;
color type t color type;
char *device;
char *loadimagetarget;

Figure 6: Features of a renderer

default values may be overridden by the input graph.
We now describe the fields in detail.

flags Bit-wise ofor flags indicating properties of the renderer. These flags are described in Table 16.

10Normally, for builds intended for local installationdot -c is run duringmake install. It may be necessary to run this
manually if cross-compiling or otherwise manually moving binaries to a different system.

GraphvizDrawing Library Manual, April 27, 2009 32

default margin Default margin size in points. This is the amount of space left around the drawing.

default pad Default pad size in points. This is the amount by which the graph is inset within the
drawing region. Note that the drawing region may be filled with a background color.

default pagesize Default page size size in points. For example, an 8.5 by 11 inch letter-sized page
would have adefault pagesize of 612 by 792.

default dpi Default resolution, in pixels per inch. Note that the x and y values may be different to
support non-square pixels.

knowncolors An array of character pointers giving a lexicographically ordered11 list of the color names
supported by the renderer.

sz knowncolors The number of items in theknowncolors array.

color type The preferred representation for colors. See Section 5.3.

device The name of a device, if any, associated with the renderer. For example, a renderer using GTK
for output might specify"gtk" as its device. If a name is given, the library will look for a plug-in
of type API device with that name, and use the associated functions to initialize and terminate the
device. See Section 6.2.

loadimage target The name of the preferred type of image format for the renderer. When a user-
supplied image is given, the library will attempt to find a function that will convert the image from
its original format to the renderer’s preferred one. A user-defined renderer may need to provide, as
additional plug-ins, its own functions for handling the conversion.

6.2 Writing a device plug-in

A device plug-in provides hooks forGraphvizto handle any device-specific operations needed before and
after rendering. The related engine of typegvdevice engine t has 2 entry points:

void (*initialize) (GVJ_t*);
void (*finalize) (GVJ_t*);

which are called at the beginning and end of rendering each job. The initialize routine might open a canvas
on window system, or set up a new page for printing; the finalize routine might go into an event loop after
which it could close the output device.

6.3 Writing an image loading plug-in

A image loading plug-in has engine typegvimageload engine t and provides a single entry point
which can be used to read in an image, convert the image from one format to another, and write the result.
Since the function actually does rendering, it is usually closely tied to a specific renderer plug-in.

void (*loadimage) (GVJ_t *job, usershape_t *us, boxf b, bool filled);

11The ordering must be done byte-wise using theLANG=C locale for byte comparison.

GraphvizDrawing Library Manual, April 27, 2009 33

Flag Description
GVRENDER DOES ARROWS Built-in arrowheads on splines
GVRENDER DOES LAYERS Supports graph layers
GVRENDER DOES MULTIGRAPH OUTPUT FILES If true, the renderer’s output can contain multiple renderings
GVRENDER DOES TRUECOLOR Supports a truecolor color model
GVRENDER Y GOES DOWN Output coordinate system has the origin in the upper left corner
GVRENDER X11 EVENTS For GUI plug-ins, defers actual rendering until the GUI event loop

invokesjob->callbacks->refresh()
GVRENDER DOES TRANSFORM Can handle transformation (scaling, translation, rotation) from univer-

sal to device coordinates. If false, the library will do the transformation
before passing any coordinates to the renderer

GVRENDER DOES LABELS Wants an object’s label, if any, provided as text during rendering
GVRENDER DOES MAPS Supports regions to which URLs can be attached. If true, URLsare

provided to the renderer, either as part of thejob->obj or via the
renderer’sbegin anchor function

GVRENDER DOES MAP RECTANGLE Rectangular regions can be mapped
GVRENDER DOES MAP CIRCLE Circular regions can be mapped
GVRENDER DOES MAP POLYGON Polygons can be mapped
GVRENDER DOES MAP ELLIPSE Ellipses can be mapped
GVRENDER DOES MAP BSPLINE B-splines can be mapped
GVRENDER DOES TOOLTIPS If true, tooltips are provided to the renderer, either as part of the

job->obj or via the renderer’sbegin anchor function
GVRENDER DOES TARGETS If true, targets are provided to the renderer, either as partof the

job->obj or via the renderer’sbegin anchor function
GVRENDER DOES Z Uses a 3D output model

Table 16: Renderer properties

When called,loadimage is given the current job, a pointer to the input imageus, and the bounding box
b in device coordinates where the image should be written. Thebooleanfilled value indicates whether
the bounding box should first be filled.

Thetype value for an image loading plug-in’sgvplugin installed t entry should specify the
input and output formats it handles. Thus, a plug-in converting JPEG to GIF would be called"jpeg2gif".
Since an image loader may well want to read in an image in some format, and then render the image using
the same format, it is quite reasonable for the input and output formats to be identical, e.g."gif2gif".

Concerning the typeusershape t, its most important fields are shown in Figure 7. These fields have

char *name;
FILE *f;
imagetypet type;
unsigned int x, y;
unsigned int w, h;
unsigned int dpi;
void *data;
size t datasize;
void (*datafree)(usershapet *us);

Figure 7: Fields inusershape t

the following meanings:

name The name of the image.

f An open input stream to the image’s data. Since the image might be processed multiple times, the

GraphvizDrawing Library Manual, April 27, 2009 34

application should use a function such asfseek to make sure the file pointer points to the beginning
of the file.

type The format of the image. The formats supported inGraphviz are FT BMP, FT GIF, FT PNG,
FT JPEG, FT PDF, FT PS andFT EPS. The valueFT NULL indicates an unknown image type.

x and y The coordinates of the lower-left corner of image in image units. This is usually the origin but
some images such as those in PostScript format may be translated away from the origin.

w and h The width and height of image in image units

dpi The number of image units per inch

data, datasize, datafree These fields can be used to cache the converted image data so that the file
I/O and conversion need only be done once. The data can be stored viadata, with datasize
giving the number of bytes used. In this case, the image loading code should store a clean-up handler
in datafree, which can be called to release any memory allocated.

If loadimage does caching, it can check ifus->data is NULL. If so, it can read and cache the
image. If not, it should check that theus->datafree value points to its owndatafree routing.
If not, then some other image loader has cached data there. The loadimage function must them
call the currentus->datafree function before caching its own version of the image.

The code template in Figure 8 indicates how caching should behandled.

if (us->data) {
if (us->datafree != my_datafree) {

us->datafree(us); /* free incompatible cache data */
us->data = NULL;
us->datafree = NULL;
us->datasize = 0;

}
}

if (!us->data) {
/* read image data from us->f and convert it;

* store the image data into memory pointed to by us->data;

* set us->datasize and us->datafree to the appropriate values.

*/
}

if (us->data) {
/* emit the image data in us->data */

}

Figure 8: Caching converted images

GraphvizDrawing Library Manual, April 27, 2009 35

7 Unconnected graphs

All of the basic layouts provided byGraphvizare based on a connected graph. Each is then extended to
handle the not uncommon case of having multiple components.Most of the time, the obvious approach is
used: draw each component separately and then assemble the drawings into a single layout. The only place
this is not done is inneatowhen the mode is"KK" andpack="false" (cf. Section 3.2).

For thedot algorithm, its layered drawings make the merging simple: the nodes on the highest rank
of each component are all put on the same rank. For the other layouts, it is not obvious how to put the
components together.

The Graphvizsoftware provides the librarypack to assist with unconnected graphs, especially by
supplying a technique for packing arbitrary graph drawingstogether quickly, aesthetically and with efficient
use of space. The following code indicates how the library can be integrated with the basic layout algorithms
given an input graphg and aGVC t valuegvc.

graph_t *sg;
FILE *fp;
graph_t** cc;
int i, ncc;

cc = ccomps(g, &ncc, (char*)0);

for (i = 0; i < ncc; i++) {
sg = cc[i];

nodeInduce (sg);
gvLayout(gvc, sg, "neato");

}
pack_graph (ncc, cc, g, 0);

gvRender(gvc, g, "ps", stdout);

for (i = 0; i < ncc; i++) {
sg = cc[i];
gvFreeLayout(gvc, sg);
agdelete(g, sg);

}

The call toccomps splits the graphg into its connected components.ncc is set to the number of
components. The components are represented by subgraphs ofthe input graph, and are stored in the returned
array. The function gives names to the components in a way that should not conflict with previously existing
subgraphs. If desired, the third argument toccomps can be used to designate what the subgraphs should
be called. Also, for flexibility, the subgraph components donot contain the associated edges.

Certain layout algorithms, such asneato, allow the input graph to fix the position of certain nodes,
indicated byND pinned(n) being non-zero. In this case, all nodes with a fixed position need to be laid
out together, so they should all occur in the same “connected” component. Thepack library provides
pccomps, an analogue toccomps for this situation. It has almost the same interface asccomps, but
takes aboolean* third parameter. The function sets the boolean pointed to totrue if the graph has nodes
with fixed positions. In this case, the component containingthese nodes is the first one in the returned array.

GraphvizDrawing Library Manual, April 27, 2009 36

Continuing with the example, we take one component at a time,usenodeInduce to create the corre-
sponding node-induced subgraph, and then lay out the component withgvLayout. Here, we useneatofor
each layout, but it is possible to use a different layout for each component.12

Next, we use thepack function pack graph to reassemble the graph into a single drawing. To
position the components,pack uses the polyomino-based approach described by Freivalds et al[FDK02].
The first three arguments to the function are clear. The fourth argument indicates whether or not there are
fixed components.

Thepack graph function uses the graph’spackmode attribute to determine how the packing should
be done. At present, packing uses the single algorithm mentioned above, but allows three varying granular-
ities, represented by the values"node", "clust" and"graph". In the first case, packing is done at the
node and edge level. This provides the tightest packing, using the least area, but also allows a node of one
component to lie between two nodes of another component. Thesecond value,"clust", requires that the
packing treat top-level clusters with a set bounding boxGD bb value like a large node. Nodes and edges
not entirely contained within a cluster are handled as in theprevious case. This prevents any components
which do not belong to the cluster from intruding within the cluster’s bounding box. The last case does the
packing at the graph granularity. Each component is treatedas one large node, whose size is determined by
its bounding box.

Note that the library automatically computes the bounding box of each of the components. Also, as
a side-effect,pack graph finishes by recomputing and setting the bounding box attribute GD bb of the
graph.

The final step is to free the component subgraphs.
Althoughdotandneatohave their specialized approaches to unconnected graphs, it should be noted that

these are not without their deficiencies. The approach used by dot, aligning the drawings of all components
along the top, works well until the number of components grows large. When this happens, the aspect ratio
of the final drawing can become very bad.neato’s handling of an unconnected graph can have two draw-
backs. First, there can be a great deal of wasted space. The value chosen to separate components is a simple
function of the number of nodes. With a certain edge structure, component drawings may use much less
area. This can produce a drawing similar to a classic atom: a large nucleus surrounded by a ring of electrons
with a great deal of empty space between them. Second, theneatomodel is essentially quadratic. If the
components are drawn separately, one can see a dramatic decrease in layout time, sometimes several orders
of magnitudes. For these reasons, it sometimes makes sense to apply thetwopi approach for unconnected
graphs to thedot andneato layouts. In fact, as we’ve noted,neato layout typically uses thepack
library by default.

12At present, thedot layout has a limitation that it only works on a root graph. Thus, to usedot for a component, one needs to
create a new copy of the subgraph, applydot and then copy the position attributes back to the component.

GraphvizDrawing Library Manual, April 27, 2009 37

References

[Coh87] J. Cohen. Drawing graphs to convey proximity: an incremental arrangement meth od.ACM
Transactions on Computer-Human Interaction, 4(11):197–229, 1987.

[DGKN97] D. Dobkin, E. Gansner, E. Koutsofios, and S. North. Implementing a general-purpose edge
router. In G. DiBattista, editor,Proc. Symp. Graph Drawing GD’97, volume 1353 ofLecture
Notes in Computer Science, pages 262–271, 1997.

[FDK02] K. Freivalds, U. Dogrusoz, and P. Kikusts. Disconnected graph layout and the polyomino
packing approach. In P. Mutzel et al., editor,Proc. Symp. Graph Drawing GD’01, volume
2265 ofLecture Notes in Computer Science, pages 378–391, 2002.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph Drawing by Force-directed Place-
ment.Software – Practice and Experience, 21(11):1129–1164, November 1991.

[GKN04] E. Gansner, Y. Koren, and S. North. Graph drawing by stress majorization. InProc. Symp.
Graph Drawing GD’04, September 2004.

[GKNV93] Emden R. Gansner, Eleftherios Koutsofios, StephenC. North, and Kiem-Phong Vo. A Tech-
nique for Drawing Directed Graphs.IEEE Trans. Software Engineering, 19(3):214–230, May
1993.

[GN00] E.R. Gansner and S.C. North. An open graph visualization system and its applications to
software engineering.Software – Practice and Experience, 30:1203–1233, 2000.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.Information
Processing Letters, 31(1):7–15, April 1989.

[KN94] Eleftherios Koutsofios and Steve North. Applications of Graph Visualization. InProceedings
of Graphics Interface, pages 235–245, May 1994.

[KS80] J. Kruskal and J. Seery. Designing network diagrams.In Proc. First General Conf. on Social
Graphics, pages 22–50, 1980.

[KW] M. Kaufmann and R. Wiese. Maintaining the mental map forcircular drawings. In
M. Goodrich, editor,Proc. Symp. Graph Drawing GD’02, volume 2528 ofLecture Notes in
Computer Science, pages 12–22.

[LBM97] W. Lee, N. Barghouti, and J. Mocenigo. Grappa: A graph package in Java. In G. DiBattista, ed-
itor, Proc. Symp. Graph Drawing GD’97, volume 1353 ofLecture Notes in Computer Science,
1997.

[ST99] Janet Six and Ioannis Tollis. Circular drawings of biconnected graphs. InProc. ALENEX 99,
pages 57–73, 1999.

[ST00] Janet Six and Ioannis Tollis. A framework for circular drawings of networks. InProc. Symp.
Graph Drawing GD’99, volume 1731 ofLecture Notes in Computer Science, pages 107–116.
Springer-Verlag, 2000.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding of Hierarchical Sys-
tem Structures.IEEE Trans. Systems, Man and Cybernetics, SMC-11(2):109–125, February
1981.

GraphvizDrawing Library Manual, April 27, 2009 38

[Wil97] G. Wills. Nicheworks - interactive visualization of very large graphs. In G. DiBattista, editor,
Symposium on Graph Drawing GD’97, volume 1353 ofLecture Notes in Computer Science,
pages 403–414, 1997.

[Win02] A. Winter. Gxl - overview and current status. InProcs. International Workshop on Graph-
Based Tools (GraBaTs), October 2002.

GraphvizDrawing Library Manual, April 27, 2009 39

A Compiling and linking

This appendix provides a brief description of how to build your program usingGraphvizas a library. It also
notes the various libraries involved. As compilation systems vary greatly, we make no attempt to provide
low-level build instructions. We assume that the user is capable of tailoring the build environment to use the
necessary include files and libraries.

All of the necessary include files and libraries are available in theinclude andlib directories where
Graphvizis installed. At the simplest level, all an application needs to do to use the layout algorithms is to
includegvc.h, which provides (indirectly) all of theGraphviztypes and functions, compile the code, and
link the program with the necessary libraries.

For linking, the application should use theGraphvizlibraries

• gvc

• graph

• pathplan

• cdt

If the system is configured to use plug-ins, these libraries are all that are necessary. At run time, the program
will load the dynamic libraries it needs.

If the program does not use plug-ins, then these libraries need to be incorporated at link time. These
libraries may include

• gvplugin dot layout

• gvplugin neato layout

• gvplugin gd

• gvplugin pangocairo13

plus any other plug-ins the program requires.
If Graphviz is built and installed with the GNU build tools, there are package configure files created

in thelib/pkgconfig directory which can be used with thepkg-config program to obtain the in-
clude file and library information for a given installation.Assuming a Unix-like environment, a sample
Makefile for building the programs listed in Appendices B, C and D14 could have the form:

CFLAGS=‘pkg-config libgvc --cflags‘ -Wall -g -O2
LDFLAGS=‘pkg-config libgvc --libs‘

all: simple dot demo

simple: simple.o
dot: dot.o
demo: demo.o

clean:
rm -rf simple dot demo *.o

13For completeness, we note that it may be necessary to explicitly link in the following additional libraries, depending on the
options set whenGraphvizwas built:expat, fontconfig, freetype2, pangocairo,cairo, pango, gd, jpeg, png, z,
ltdl, and other libraries required by Cairo and Pango. Typically, though, most builds handle these implicitly.

14They can also be found, along with theMakefile, in thedot.demo directory of theGraphvizsource.

GraphvizDrawing Library Manual, April 27, 2009 40

B A sample program: simple.c

This following code illustrates an application which usesGraphvizto position a graph using thedot layout
and then write the output using theplain format. An application can replace the call togvRender with
its own function for rendering the graph, using the layout information encoded in the graph structure (cf.
Section 2.3).

GraphvizDrawing Library Manual, April 27, 2009 41

#include <gvc.h>

int main(int argc, char **argv)
{

GVC_t *gvc;
graph_t *g;
FILE *fp;

gvc = gvContext();

if (argc > 1)
fp = fopen(argv[1], "r");

else
fp = stdin;

g = agread(fp);

gvLayout(gvc, g, "dot");

gvRender(gvc, g, "plain", stdout);

gvFreeLayout(gvc, g);

agclose(g);

return (gvFreeContext(gvc));
}

C A sample program: dot.c

This example shows how an application might read a stream of input graphs, lay out each, and then use the
Graphvizrenderers to write the drawings to an output file. Indeed, this is precisely how thedot program is
written, ignoring some signal handling, its specific declaration of theInfo data (cf. Section 4.1), and a few
other minor details.

#include <gvc.h>

int main(int argc, char **argv)
{

graph_t *g, *prev = NULL;
GVC_t *gvc;

gvc = gvContext();
gvParseArgs(gvc, argc, argv);

while ((g = gvNextInputGraph(gvc))) {
if (prev) {

gvFreeLayout(gvc, prev);
agclose(prev);

GraphvizDrawing Library Manual, April 27, 2009 42

}
gvLayoutJobs(gvc, g);
gvRenderJobs(gvc, g);
prev = g;

}
return (gvFreeContext(gvc));

}

D A sample program: demo.c

This example provides a modification of the previous example. Again it relies on theGraphvizrenderers,
but now it creates the graph dynamically rather than readingthe graph from a file.

#include <gvc.h>

int main(int argc, char **argv)
{

Agraph_t *g;
Agnode_t *n, *m;
Agedge_t *e;
Agsym_t *a;
GVC_t *gvc;

/* set up a graphviz context */
gvc = gvContext();

/* parse command line args - minimally argv[0] sets layout engine */
gvParseArgs(gvc, argc, argv);

/* Create a simple digraph */
g = agopen("g", AGDIGRAPH);
n = agnode(g, "n");
m = agnode(g, "m");
e = agedge(g, n, m);

/* Set an attribute - in this case one that affects the visible rendering */
agsafeset(n, "color", "red", "");

/* Compute a layout using layout engine from command line args */
gvLayoutJobs(gvc, g);

/* Write the graph according to -T and -o options */
gvRenderJobs(gvc, g);

/* Free layout data */
gvFreeLayout(gvc, g);

GraphvizDrawing Library Manual, April 27, 2009 43

/* Free graph structures */
agclose(g);

/* close output file, free context, and return number of errors */
return (gvFreeContext(gvc));

}

E Some basic types and their string representations

A point type is the structure

struct {
int x, y;

}

The fields can either give an absolute position or represent avector displacement. Apointf type is the
same, withint replaced withdouble. A box type is the structure

struct {
point LL, UR;

}

representing a rectangle. TheLL gives the coordinates of the lower-left corner, while theUR is the upper-
right corner. Aboxf type is the same, withpoint replaced withpointf.

The following gives the accepted string representations corresponding to values of the given types.
Whitespace is ignored when converting these values from strings to their internal representations.

point "x,y" where(x,y) are the integer coordinates of a position in points (72 points = 1 inch).

pointf "x,y" where(x,y) are the floating-point coordinates of a position in inches.

rectangle "llx,lly,urx,ury" where(llx,lly) is the lower left corner of the rectangle and
(urx,ury) is the upper right corner, all in integer points.

splineType A semicolon-separated list ofspline values.

spline This type has an optional end point, an optional start point,and a space-separated list ofN =
3n + 1 points for some positive integern. An end point consists of apoint preceded by"e,"; a
start point consists of apoint preceded by"s,". The optional components are separated by spaces.

The terminating list of pointsp1, p2, . . . , pN gives the control points of a B-spline. If a start point
is given, this indicates the presence of an arrowhead. The start point touches one node of the corre-
sponding edge and the direction of the arrowhead is given by the vector fromp1 to the start point. If
the start point is absent, the pointp1 will touch the node. The analogous interpretation holds foran
end point andpN .

