Drawing graphs wittGraphviz

Emden R. Gansner

April 27, 2009

GraphvizDrawing Library Manual, April 27, 2009 2
Contents
1 Introduction 3
1.1 String-based layouts e e 3
1.1.1 dot . . . 3
1.1.2 XAOt e e e e e e 4
1.1.3 plain . . e e e e 5
1.1.4 plain-ext e e e 6
1.1.5 GXL . . o e 6
1.2 Graphvizasalbrary e 6
2 Basic graph drawing 7
2.1 Creatingthegraph. e e 7
2.1.1 Attributes e e e e e 9
2.2 Layingoutthegraph e 11
2.3 Renderingthegraph. e e 15
2.3.1 Drawingnodesandedges e e 17
2.4 Cleaningupagraph e e e 18
3 Inside the layouts 18
3.1 dot. .. e e 19
3.2 NEAtO e e e 20
3.3 fdp . . . e 21
34 tWOPI . . L e e e e 21
3.5 CIrCO . . . e s, 22
4 TheGraphvizcontext 22
4.1 Application-specificdata e 23
5 Graphics renderers 23
5.1 TheGVJ_t datastructure e e e e 27
5.2 Inside thebj state_t datastructure 28
5.3 Colorinformation e e 29
6 Adding Plug-ins 29
6.1 Writingarendererplug-in e e e 31
6.2 Writingadevice plug-in e e 32
6.3 Writing animage loading plug-in. 32
7 Unconnected graphs 35
A Compiling and linking 39
B A sample program: si npl e. ¢ 40
C A sample program: dot . ¢ 41
D A sample program: deno. ¢ 42
E Some basic types and their string representations 43

GraphvizDrawing Library Manual, April 27, 2009 3

1 Introduction

The Graphvizpackage consists of a variety of software for drawing attdtd graphs. It implements a
handful of common graph layout algorithms. These are:

dot A Sugiyama-style hierarchical layout[STT81, GKNV93].

neato An implementation of the Kamada-Kawai algorithm[KK89] falymmetric” layouts. This is a vari-
ation of multidimensional scaling[KS80, Coh87].

fdp An implementation of the Fruchterman-Reingold algoritRR91] for “symmetric” layouts. This lay-
out is similar to neato, but there are performance and featliffierences.

twopi A radial layout as described by Wills[Wil97].

circo A circular layout combining aspects of the work of Six andlisfT99, ST00] and Kaufmann and
Wiese[KW].

In addition, Graphvizprovides an assortment of more general-purpose graphtalgsr such as transitive
reduction, which have proven useful in the context of grawihg.

The package was designed[GNOO] to rely on the “programHias-fimodel of software, in which dis-
tinct graph operations or transformations are embodied@gams. Graph drawing and manipulation are
achieved by using the output of one filter as the input of aeptith each filter recognizing a common,
text-based graph format. One thus has an algebra of grapihg, a scripting language to provide the base
language with variables and function application and casitjom.

Despite the simplicity and utility of this approach, somelagations need or desire to use the software
as a library with bindings in a non-scripting language, eathan as primitives composed using a scripting
language. Th&raphvizsoftware provides a variety of ways to achieve this, runmirgpectrum from very
simple but somewhat inflexible to fairly complex but offeyia good deal of application control.

1.1 String-based layouts

The simplest mechanism for doing this consists of using ttex fipproach in disguise. The application,
perhaps using th&raphvizgr aph library, constructs a representation of a graph inDI@ language. The
application can then invoke the desired layout program, asgingsyst emor popen on a Unix system,
passing the graph using an intermediate file or a pipe. Thautgyrogram computes position information
for the graph, attaches this as attributes, and delivergréggh back to the application through another file
or pipe. The application can then read in the graph, and applgeometric information as necessary. This
is the approach used by many applications, e.g., dotty[Hld@d grappa[LBM97], which rely oGraphviz

There are severdbraphviz output formats which can be used in this approach. As wittoalput
formats, they are specified by using & flag when invoking the layout program. The input to the pratga
must always be in thBOT language.

1.1.1 dot

This format relies on th®OT language to describe the graphs, with attributes attachedrae-value pairs.
Thegr aph library provides a parser for graphs representeD@T. Using this, it is easy to read the
graphs and query the desired attributes usigget oragxget . For more information on these functions,
see Section 2.1.1. The string representations of the \atygmes referred to are described in Appendix E.
On output, the graph will havelgb attribute of typer ect angl e, specifying the bounding box of the
drawing. If the graph has a label, its position is specifiedhi®l p attribute of typepoi nt .

GraphvizDrawing Library Manual, April 27, 2009 4

Each node gefgos, wi dt h andhei ght attributes. The first has tygeoi nt , and indicates the center
of the node in points. Thei dt h andhei ght attributes are floating point numbers giving the width and
height, in inches, of the node’s bounding box. If the nodeshasord shape, the record rectangles are given
in ther ect s attribute. This has the format of a space-separated ligaténgles. If the node is a polygon
(including ellipses) and theer t i ces attribute is defined for nodes, this attribute will contdie tertices
of the node, in inches, as a space-separated ligboht f values. For ellipses, the curve is sampled, the
number of points used being controlled by thenpl epoi nt s attribute. The points are given relative
to the center of the node. Note also that the points only dieenibde’s basic shape; they do not reflect
any internal structure. If the node hper i pheri es greater than one, or a shape likksquar e", the
verti ces attribute does not represent the extra curves or lines.

Every edge is assignedpas attribute havingspl i neType type. If the edge has a label, the label
position is given in thé p of typepoi nt .

1.1.2 xdot

Thexdot format is a strict extension of thrgot format, in that it provides the same attributesdag as
well as additional drawing attributes. These additiontitaites specify how to draw each component of the
graph using primitive graphics operations. This can baqaairly helpful in dealing with node shapes and
edge arrowheads. Unlike the information provided bywvket i ces attribute described above, the extra
attributes inxdot provide all geometric drawing information, including tharmus types of arrowheads
and multiline labels with variations in alignment. In adlit, all the parameters use the same units.

There are six new attributes, listed in Table 1. These dmgattributes are only attached to nodes and
edges. Clearly, the last four attributes are only attacbestiges.

draw_ General drawing operation
Jddraw. Label drawing operations
_hdraw. Head arrowhead

tdraw. Tail arrowhead

_hl draw. Head label

tldraw. Tail label

()

Table 1:xdot drawing attributes

The value of these attributes are strings consisting of tmeatenation of some (multi-)set of the 7
drawing operations listed in Table 2. The color, font nanmgl style values supplied in thg, ¢, F', andS
operations have the same format and interpretation asaher , f ont nanme, andst yl e attributes in the
source graph.

In handling alignment, the application may want to recoraghe string width using its own font draw-
ing primitives.

The text operation is only used in thabel attributes. Normally, the non-text graphics operatiores ar
only used in the non-label attributes. If, however, a nodestepe="recor d" or an HTML-like label
is involved, a label attribute may also contain various breg operations. In addition, if theéecor at e
attribute is set on an edge, Itabel attribute will also contain a polyline operation.

All coordinates and sizes are in points. If an edge or nodwisible, no drawing operations are attached
to it.

GraphvizDrawing Library Manual, April 27, 2009 5

E xo yow h Filled ellipse with equation(z — x0)/w)? + ((y — y0)/h)? =1
exgyowh Unfilled ellipse with equatior(z — x¢)/w)? + ((y — yo)/h)? =1
Pnxiyr ... Tnyn Filled polygon with the givem vertices

PRTIYL - - TnYn Unfilled polygon with the givem vertices

Lnxiyr ... Tnyn Polyline with the givem vertices

Bnxiyr ... TnyYn B-spline with the givem control points.n = 1mod3 andn > 4
bnxiyr --. Tn Yn Filled B-spline with the givem control points.n = 1mod3 andn > 4

Txyjwn —ciey---¢, Textdrawn using the baseline point, y). The text consists of the bytes
following’ -’ . The text should be left-aligned (centered, right-aligresd
the point ifj is -1 (0, 1), respectively. The value gives the width of the
text as computed by the library.

Cn —cico---cp Set color used to fill closed regions. The color is specifiedhgn char-
acters following -’ .

CNn—CiCy - Cp Set pen color, the color used for text and line drawing. THerde speci-
fied by then characters following - ' .

Fsn—cico---cp Set font. The font size is points. The font name is specified by the
characters following -’ .

Sn—cico---cp Set style attribute. The style value is specified byrtlobaracters following

Table 2:xdot drawing operations

1.1.3 plain

Thepl ai n format is line-based and very simple to parse. This works$ feehpplications which need or
wish to avoid using thgr aph library. The price for this simplicity is that the format extes very little
detailed layout information beyond basic position infotima. If an application needs more than what is
supplied in the format, it should use tbet orxdot format.

There are four types of linegir aph, node, edge andst op. The output consists of a singlg aph
line; a sequence aiode lines, one for each node; a sequenceedfe lines, one for each edge; and a
single terminatingst op line. All units are in inches, represented by a floating painnber.

As noted, the statements have very simple formats.

gr aph scale width height

node name x y width height label style shape color fillcolor
edge tail head nzy 41 ... x,, y, [label xI yl] style color

stop

We now describe the statements in more detail.

graph The width and heightvalues give the width and height of the drawing. The lower ¢eirner of
the drawing is at the origin. Thecalevalue indicates how the drawing should be scaledsf ae
attribute was given and the drawing needs to be scaled t@mweuntfo that size. If no scaling is
necessary, it will be set to 1.0. Note that all graph, nodeeadge coordinates and lengths are given
unscaled.

node The namevalue is the name of the node, axdndy give the node’s position. Theidth andheight
are the width and height of the node. Tihbel, style shape color andfillcolor values give the node’s
label, style, shape, color and fillcolor, respectivelyngsilefault attribute values where necessary. If
the node does not havesa yl e attribute,” sol i d" is used.

GraphvizDrawing Library Manual, April 27, 2009 6

edge The tail and headvalues give the names of the head and tail nodess the number of control
points defining the B-spline forming the edge. This is fokmiMy2 « n numbers giving the x and
y coordinates of the control points in order from tail to hedfithe edge has &abel attribute,
this comes next, followed by the x and y coordinates of thellalposition. The edge description is
completed by the edge’s style and color. As with nodes, ik $¢ not defined; sol i d" is used.

1.1.4 plain-ext

Thepl ai n- ext format is identical with thepl ai n format, except that port names are attached to the
node names in an edge, when applicable. It uses the D€Dilrepresentation, where pgstof noden is
given asn: p.

1.15 GXL

The GXL [Win02] dialect of XML is a widely accepted standaat fepresenting attributed graphs as text,
especially in the graph drawing and software engineeringroonities. As an XML dialect, there are
many tools available for parsing and analyzing graphs sgmted in this format. Other graph drawing
and manipulation packages either use GXL as their main geagiuage, or provide a translator. In this,
Graphvizis no different. We supply the prograndet 2gxl andgx| 2dot for converting between the
DOT and GXL formats. Thus, if an application is XML-baseduge theGraphviztools, it needs to insert
these filters as appropriate between its I/O and3rephvizlayout programs.

1.2 Graphvizas a library

The role of this document is to describe how an applicationuse theGraphvizsoftware as a library rather
than as a set of programs. It will describe the intended AR&dbus levels, concentrating on the purpose
of the functions from an application standpoint, and the teylibrary functions should be used together,
e.g., that one has to call function A before function B. Ttterition is not to provide detailed manual pages,
partly because most of the functions have a high-level fexte; often just taking a graph pointer as the
sole argument. The real semantic details are embedded atttimites of the graph, which are described
elsewhere.

The remainder of this manual describes how to build an agipdic usingGraphvizas a library in the
usual sense. The next section presents the basic techmigueing theGraphvizcode. Since the other
approaches are merely ramifications and extensions of tsie bpproach, the section also serves as an
overview for all uses. Section 3 breaks each layout algoriipart into its individual steps. With this
information, the application has the option of eliminatoegtain of the steps. For example, all of the layout
algorithms can layout edges as splines. If the applicatitends to draw all edges as line segments, it would
probably wish to avoid the spline computation, especiadlytas moderately expensive in terms of time.
Section 2.3 explains how an application can invoke@maphvizrenderers, thereby generating a drawing
of a graph in a concrete graphics format suctpagor PostScript For an application intending to do its
own rendering, Section 5 recommends a technique which altbeGraphvizlibrary to handle all of the
bookkeeping details related to data structures and mact@pendent representations while the application
need only supply a few basic graphics functions. Sectiors@udises an auxiliary library for dealing with
graphs containing multiple connected components.

GraphvizDrawing Library Manual, April 27, 2009 7

2 Basic graph drawing

Figure 1 gives a template for the basic library usésoéphviz in this instance using thdot hierarchical
layout. (Appendix B provides the listing of the completegmaim.) Basically, the program creates a graph
using thegr aph library, setting node and edge attributes to affect how tlaplyis to be drawn; calls the
layout code; and then uses the position information atth¢behe nodes and edges to render the graph.
The remainder of this section explores these steps in mdad.de

Agraph_t+ G
GVC_t+* gvc;

gvc = gvContext(); [+ library function */
G = createGaph ();

gvLayout (gvc, G "dot"); /= library function */
drawG aph (Q;

gvFreelLayout (gvc, g); [+ library function =/
agcl ose (Q; [+ library function */
gvFr eeCont ext (gvc);

Figure 1: Basic use

Here, we just note thgvc parameter. This is a handle td@aphviz contextwhich contains drawing
and rendering information independent of the propertiegajeng to a particular graph. For the present,
we view this an abstract parameter required for vari@usphvizfunctions. We will discuss it further in
Section 4.

2.1 Creating the graph

The first step in drawing a graph is to create it. To useGnaphvizlayout software, the graph must be
created using thgr aph library. Before any other function igr aph is called, an application must call the
library initialization functionagi ni t . This function is called bgvCont ext andgvPar seAr gs, so if
either of these is used, no additional calkigi ni t is necessary.Also, it is safe to make multiple calls to
aginit.

We can create a graph in one of two ways, usagg ead or agopen. The former function takes a
FI LEx pointer to a file open for reading. It is assumed the file cost#ie description of graphs using the
DOT language. Thagr ead function parses one graph at a time, returning a pointer tttaibuted graph
generated from the input, &ULL if there are no more graphs or an error occurred.

The alternative technique is to caljopen.

Agraph_t+ G = agopen(nane, type);

The firstargument isahar * giving the name of the graph; the second argumentigdnvalue describing
the type of graph to be created. A graph can be directed orestdd. In addition, a graph can be strict,
i.e., have at most one edge between any pair of nodes, ortrion-allowing an arbitrary number of edges
between two nodes. If the graph is directed, the pair of nilesdered, so the graph can have edges from
nodeA to nodeB as well as edges frorB to A. These four combinations are specified by the values in
Table 3. The return value is a new graph, with no nodes or edges

Nodes and edges are created by the functiamsode andagedge, respectively.

See Section 2.3 for a description of occasions when the merergl functioragi ni t | i b should be called first.

GraphvizDrawing Library Manual, April 27, 2009 8

Graph Type Graph

AGRAPH Non-strict, undirected graph
AGRAPHSTRICT Strict, undirected graph
AGDIGRAPH Non-strict, directed graph
AGDIGRAPHSTRICT| Strict, directed graph

Table 3: Graph types

Agnode_t +ragnode(Agraph_t=, char=);
Agedge t ragedge(Agraph_tx, Agnode t=*, Agnode_ t=*);

The first argument is the graph containing the node or edgte tHat if this is a subgraph, the node or edge
will also belong to all containing graphs. The second argun@agnode is the node’s name. This is a
key for the node within the graph. #gnode is called twice with the same name, the second invocation
will not create a new node but simply return a pointer to thejmusly created node with the given name.
Edges are created usingedge by passing in the edge’s two nodes. If the graph is not saidjtional
calls toagedge with the same arguments will create additional edges betweztwo nodes. If the graph
is strict, extra calls will simply return the already exigfiedge. For directed graphs, the first and second
node arguments are taken to be the tail and head nodes, treslyed-or undirected graph, they still play
this role for the functionsgf st out andagf st i n, but when checking if an edge exists wiedge or
agf i ndedge, the order is irrelevant.
As suggested above, a graph can also contain subgraph® dieesreated usinggsubg:

Agraph_t +ragsubg(Agraph_t=, charx);

The first argument is the immediate parent graph; the secgnuuirgnt is the name of the subgraph.
Subgraphs play three roles raphviz First, a subgraph can be used to represent graph structure,
indicating that certain nodes and edges should be grouggdhter. This is the usual role for subgraphs
and typically specifies semantic information about the rapmponents. In this generality, the drawing
software makes no use of subgraphs, but maintains thesteuctr use elsewhere within an application.
In the second role, a subgraph can provide a context fongedtiributes. InGraphviz these are often
attributes used by the layout and rendering functions. kamgle, the application could specify thatue
is the default color for nodes. Then, every node within tHegsaph will have color blue. In the context of
graph drawing, a more interesting example is:

subgr aph {
rank = sane; A, B; C

}

This (anonymous) subgraph specifies that the ndgdsand C should all be placed on the same rank if
drawn usingdot

The third role for subgraphs combines the previous two. ¢f tlame of the subgraph begins with
"cl ust er", Graphvizidentifies the subgraph as a spedhistersubgraph. The drawing softwareill
do the layout of the graph so that the nodes belonging to tistesl are drawn together, with the entire
drawing of the cluster contained within a bounding rectang|

We note here some important fields used in nodes, edges golisgiénp, ep andgp are pointers to
a node, edge and graph, respectivaly; >nanme andnp- >gr aph give the name of the node and the root
graph containing itep- >t ai | andep- >head give the tail and head nodes of the edge, gpé>r oot
gives the root graph containing the subgraph. For the ragitgrthis field will point to itself.

2if supported

GraphvizDrawing Library Manual, April 27, 2009 9

2.1.1 Attributes

In addition to the abstract graph structure provided by spddges and subgraphs, Beaphvizlibraries
also support graph attributes. These are simply stringeckhame/value pairs. Attributes are used to specify
any additional information which cannot be encoded in tr&ralbt graph. In particular, the attributes are
heavily used by the drawing software to tailor the variousngetric and visual aspects of the drawing.

Reading attributes is easily done. The functagget takes a pointer to a graph component (node,
edge or graph) and an attribute name, and returns the valhe afttribute for the given component. Note
that the function may return eith®ULL or a pointer to the empty string. The first value indicates tha
the given attribute has not been defined for any componetiteigtaph of the given kind. Thus, @bc
is a pointer to a node aralgget (abc, "col or") returnsNULL, then no node in the root graph has a
color attribute. If the function returns the empty stringistusually indicates that the attribute has been
defined but the attribute value associated with the spediligeft is the default for the application. So, if
agget (abc, "col or") now returns' ", the node is taken to have the default color. In practicahser
these two cases are very similar. Using our example, whétbettribute value iBIULL or" " , the drawing
code will still need to pick a color for drawing and will pratdg use the default in both cases.

Setting attributes is a bit more complex. Before attachimgtéribute to a graph component, the code
must first set up the default case. This is accomplished byldoccagr aphattr, agnodeattr or
agedgeat t r for graph, node or edge attributes, respectively. The tgbdise 3 functions are identical.
They all take a graph and two strings as arguments, and rattepresentation of the attribute. The first
string gives the name of the attribute; the second supgiiesiéfault value, which must not IdJLL. The
graph must be the root graph.

Once the attribute has been initialized, the attribute @asdb for a specific component by calling

agset (voidx, char*, char=*)},

with a pointer to the component, the name of the attribute tardvalue to which it should be set. The
attribute value must not B€UL L.
For simplicity, thegr aphlibrary provides the function

agsaf eset (voi d+x, char*, charx, char+)}

the first three arguments being the same as thosegekt . This function first checks that the named
attribute has been declared for the given graph compongitthds not, it declares the attribute, using its
last argument as the required default value. It then setatthbute value for the specific component.

When an attribute is assigned a value, the graph librarycagpk the string. This means the application
can use a temporary string as the argument; it does not hdeeothe string throughout the application.
Each node, edge, and graph maintains its own attribute s:al@viously, many of these are the same
strings, so to save memory, the graph library uses a refereognting mechanism to share strings. An
application can employ this mechanism by usingalgst r dup() function. If it does, it must also use the
agstrfree() function if it wishes to release the strinGraphvizsupports HTML-like tables as labels.
To allow these to be handled transparently, the library asgsecial version of reference counted strings.
To create one of these, one usagst r dup_ht m () rather tharagst rdup() . Theagstrfree() is
still used to release the string.

Note that some attributes are replicated in the graph, aipgeance as the usual string-valued attribute,
and also in an internal machine format such amn , doubl e or some more structured type. An application
should only set attributes using strings agb et . The implementation of the layout algorithm may change
the machine-level representation or may change when it th@esonversion from a string value. Hence,
the low-level interface cannot be relied on by the applorati Also note that there is not a one-to-one
correspondence between string-valued attributes anthaitattributes. A given string attribute might be

GraphvizDrawing Library Manual, April 27, 2009 10

encoded as part of some data structure, might be represeatacultiple fields, or may have no internal
representation at all.

In order to expedite the reading and writing of attributesl&mge graphsGraphvizprovides a lower-
level mechanism for manipulating attributes which can dvwshing a string. Attributes have a represen-
tation of typeAgsym t . This is basically the value returned by the initializatfonctionsagr aphat tr,
etc. It can also be obtained by a callagf i ndat t r, which takes a graph component and an attribute
name. If the attribute has been defined, the function retupwinter to the correspondiggsym t value.
This can be used to directly access the corresponding wtrmlue, using the functiorsgxget and
agxset . These are identical tagget andagset , respectively, except that instead of taking the attribute
name as the second argument, they use thaex field of theAgsym t value to extract the attribute value
from an array.

Due to the nature of the implementation of attributesGiraphviz an application should, if possible,
attempt to define and initialize all attributes before drephodes and edges.

The drawing algorithms iGraphvizuse a large collection of attributes, giving the applicatiogreat
deal of control over the appearance of the drawing. For metaildd information on what the attributes
mean, the reader should consult the mamralwing graphs with dot

We can divide the attributes into those that affect the pleeng of nodes, edges and clusters in the
layout and those, such as color, which do not. Table 4 givesitide attributes which have the potential to
change the layout. This is followed by Tables 5, 6 and 7, wHizthe same for edges, graphs, and clusters.

Note that in some cases, the effect is indirect. An examplthisfis thensl i ni t attribute, which

Name Default Use
distortion 0.0 node distortion foshape=pol ygon
fixedsi ze false label text has no affect on node size
f ont name Ti mes- Ronman font family
fontsize 14 point size of label
group name of node’s group
hei ght .5 height in inches
| abel node name any string
mar gi n 0.11,0.055 space between node label and boundary
orientation | 0.0 node rotation angle
peri pheries | shape- dependent | number of node boundaries
pin false fix node at itspos attribute
regul ar false force polygon to be regular
r oot indicates node should be used as root of a layout
shape ellipse node shape
shapefile 1 external EPSF or SVG custom shape file
si des 4 number of sides foshape=pol ygon
skew 0.0 skewing of node foshape=pol ygon
wi dt h .75 width in inches
z 0.0 T z coordinate for VRML output

Table 4: Geometric node attributes

potentially reduces the effort spent on network simpleoalgms to position nodes, thereby changing
the layout. Some of these attributes affect the initial layaf the graph in universal coordinates. Others
only play a role if the application uses tl&graphvizrenderers (cf. Section 2.3), which map the drawing
into device-specific coordinates related to a concreteubdmat. For exampleGraphvizonly uses the
cent er attribute, which specifies that the graph drawing should drgered within its page, when the
library generates a concrete representation. The tabdéisgliish these device-specific attributes by a
symbol at the start of the Use column.

Tables 8, 9, 10 and 11 list the node, edge, graph and clustigugts, respectively, that do not effect

GraphvizDrawing Library Manual, April 27, 2009 11

Name Default Use

constraint | true use edge to affect node ranking

f ont name Ti mes- Roman | font family

fontsize 14 point size of label

headclip true clip head end to node boundary

headport center position where edge attaches to head node

| abel edge label

I en 1.0/0.3 preferred edge length

| head name of cluster to use as head of edge

Itail name of cluster to use as tail of edge

m nl en 1 minimum rank distance between head and tail

sanehead tag for head node; edge heads with the same|tag
are merged onto the same port

sanet ai | tag for tail node; edge tails with the same tag are
merged onto the same port

tailclip true clip tail end to node boundary

tail port center position where edge attaches to tail node

wei ght 1 importance of edge

Table 5: Geometric edge attributes

the placement of components. Obviously, the values of thésibutes are not reflected in the position
information of the graph after layout. If the applicationnd&es the actual drawing of the graph, it must
decide if it wishes to use these attributes or not.

Among these attributes, some are used more frequently thanso A graph drawing typically needs to
encode various application-dependent properties in hresentations of the nodes. This can be done with
text, using thé abel ,f ont nane andf ont si ze attributes; with color, using theol or ,f ont col or,
fillcol or andbgcol or attributes; or with shapes, the most common attributegtsdiape, hei ght ,
wi dt h,styl e,fi xedsi ze,peri pheri es andregul ar,

Edges often display additional semantic information whidol or andst yl e attributes. If the edge
is directed, thar r owhead, ar r owsi ze,arrowt ai | anddi r attributes can play arole. Using splines
rather than line segments for edges, as determined ®pthenes attribute, is done for aesthetics or clarity
rather than to convey more information.

There are also a number of frequently used attributes wHielstahe layout geometry of the nodes
and edges. These includmnpound, | en, | head, | tai |l , ni nl en, nodesep, pi n, pos, r ank,
rankdi r,ranksep andwei ght . Within this category, we should also mention reeck andover | ap
attributes, though they have a somewhat different flavor.

The attributes described thus far are used as input to tleeiialgorithms. There is a collection of
attributes, displayed in Table 12, which, by conventi@Gnaphvizuses to specify the geometry of a layout.
After an application has usd8raphvizto determine position information, if it wants to write ohetgraph
in DOT with this information, it should use the same attributes.

In addition to the attributes described above which havealisffect, there is a collection of attributes
used to supply identification information or web actionsbl€dl 3 lists these.

2.2 Laying out the graph

Once the graph exists and the attributes are set, the apmticzan pass the graph to one of Beaphviz
layout functions by a call tgvLayout . As arguments, this function takes a pointer G\t , a pointer
to the graph to be laid out, and the name of the desired laygatidom. The algorithm names are the same

GraphvizDrawing Library Manual, April 27, 2009

12

Name Default Use

center false 1 center drawing opage

clusterrank | | ocal may begl obal ornone

conpound false allow edges between clusters

concentrate | false enables edge concentrators

defaul tdist | 1+ (>, p len)/|E|\/m separation between nodes in different compone

dim 2 dimension of layout

dpi 96/0 dimension of layout

epsilon .0001|V| or .0001 termination condition

f ont nane Ti mes- Ronman font family

f ont pat h list of directories to such for fonts

fontsize 14 point size of label

| abel T any string

mar gi n 1 space placed around drawing

maxiter layout-dependent bound on iterations in layout

nclimt 1.0 scale factor for mincross iterations

m ndi st 1.0 minimum distance between nodes

node maj or variation of layout

nodel shortpath model used for distance matrix

nodesep .25 separation between nodes, in inches

nslimt if set tof, bounds network simplex iterations b
(f(number of nodesyhen setting x-coordinates

ordering specify out or in edge ordering

orientation | portrait T use landscape orientationribt at e is not used
and the value i andscape

overl ap true specify if and how to remove node overlaps

pack do components separately, then pack

packnode node granularity of packing

page t unit of paginationg.g." 8. 5, 11"

guant um if quantum > 0.0, node label dimensions will bg
rounded to integral multiples afuant um

r ank same, m n, max, sour ce or si nk

rankdir B sense of layout, i.e, top to bottom, left to right, e

ranksep .75 separation between ranks, in inches.

ratio approximate aspect ratio desiréd,l | oraut o

rem ncross If true and there are multiple clusters, re-run cro
ing minimization

resol ution synonym fordpi

r oot specifies node to be used as root of a layout

rotate 1 1f 90, set orientation to landscape

sear chsi ze 30 maximum edges with negative cut values to che
when looking for a minimum one during netwo
simplex

sep 0.1 factor to increase nodes when removing overla|

si ze maximum drawing size, in inches

splines render edges using splines

start random manner of initial node placement

voro_margin | 0.05 factor to increase bounding box when more sp

Vi ewpor t

is necessary during Voronoi adjustment
tClipping window

nts

o

pck

ace

Table 6: Geometric graph attributes

GraphvizDrawing Library Manual, April 27, 2009 13

Name Default Use
f ont name Ti mes- Roman | font family
fontsize 14 point size of label
| abel edge label
peri pheries | 1 number of cluster boundaries

Table 7: Geometric cluster attributes

Name Default Use
col or bl ack node shape color
fillcolor | Iightgrey | node fill color
fontcol or | bl ack text color
| ayer overlay range| al | ,id orid:id
nojustify | false context for justifying multiple lines of text
style style options, e.gbol d, dotted, filled
Table 8: Decorative node attributes
Name Default Use
arr onhead normal style of arrowhead at head end
arrowsi ze 1.0 scaling factor for arrowheads
arrow ai | normal style of arrowhead at tail end
col or bl ack edge stroke color
decorate if set, draws a line connecting labels with their
edges
dir forwar d/ none | f orward, back, bot h, ornone
fontcol or bl ack type face color
headl abel label placed near head of edge
| abel angl e -25.0 angle in degrees which head or tail label is rotated
off edge
| abel di st ance 1.0 scaling factor for distance of head or tail label fram
node
| abel f| oat false lessen constraints on edge label placement
| abel font col or | bl ack type face color for head and tail labels
| abel f ont nanme Ti mes- Ronman font family for head and tail labels
| abel font si ze 14 point size for head and tail labels
| ayer overlay range al | ,id orid:id
noj ustify false context for justifying multiple lines of text
style drawing attributes such asol d, dotted, or
filled
taill abel label placed near tail of edge

Table 9: Decorative edge attributes

GraphvizDrawing Library Manual, April 27, 2009 14

headt ar get
headt ool tip
hr ef

tail URL
tail href
tailtarget
tailtooltip
t ar get
tooltip

browser window associated wittead URL
tooltip associated withead URL
synonym forURL

URL attached to tail label

synonym fort ai | URL

browser window associated withai | URL
tooltip associated withai | URL

browser window associated withRL
tooltip associated withURL

Table 13: Miscellaneous attributes

Name Default Use
bgcol or background color for drawing, plus initial fill color
char set " UTF- 8" character encoding for text
fontcol or bl ack type face color
| abel j ust centered left, right or center alignment for graph labels
| abel | oc bottom top or bottom location for graph labels
| ayers names for output layers
| ayer sep " separator characters used in layer specification
noj ustify false context for justifying multiple lines of text
out put or der "breadt hfirst" | orderinwhich to emit nodes and edges
pagedir BL traversal order of pages
sanpl epoints | 8 number of points used to represent ellipses and|cir-
cles on output
styl esheet XML stylesheet
truecol or determines truecolor or color map model fpr
bitmap output
Table 10: Decorative graph attributes
Name Default Use
bgcol or background color for cluster
col or bl ack | cluster boundary color
fillcolor | black | clusterfill color
fontcol or | bl ack | textcolor
| abel j ust | centered| left, right or center alignment for cluster labels
| abel | oc top top or bottom location for cluster labels
noj ustify | false context for justifying multiple lines of text
pencol or bl ack | cluster boundary color
style style options, e.gbol d, dotted, filled;
Table 11: Decorative cluster attributes
Name Use
bb bounding box of drawing or cluster
Ip position of graph, cluster or edge label
pos position of node or edge control points
rects rectangles used in records
vertices | points defining node’s boundary, if requested
Table 12: Output position attributes
Name Use
URL hyperlink associated with node, edge, graph or cluster
coment comments inserted into output
headURL URL attached to head label
headhr ef synonym forheadURL

GraphvizDrawing Library Manual, April 27, 2009 15

as those of the layout programs listed in Section 1. Thdst " is used to invokelot , etc?

The layout algorithm will do everything that the correspimigdprogram would do, given the graph and
its attributes. This includes assigning node positiongresenting edges as splifiebandling the special
case of an unconnected graph, plus dealing with variousiealfeatures such as preventing node overlaps.

There are two special layout engines available in the fbranop" and" nop2" . These correspond to
running theneatocommand with the flagsn and- n2, respectively. That is, they assume the input graph
already has position information stored for nodes and, éndkter case, some edges. They can be used to
route edges in the graph or perform other adjustments. Matehey expect the position information to be
stored agos attributes in the nodes and edges. The application can glitgbif, or use thelot renderer.

For example, if one wants to position the nodes of a graptgusiiot layout, but wants edges drawn as
line segments, one could use the following code. The firsta@vLayout lays out the graph using dot;

Agraph_t+ G
GVC t* gvc;

| *
* Create gvc and graph
* [

gvLayout (gvc, G "dot");
gvRender (gvc, G "dot", NULL);
gvFreeLayout (gvc, G;

gvLayout (gvc, G "nop");
gvRender (gvc, G "png", stdout);
gvFreeLayout (gvc, G ;

agcl ose (G;

Figure 2: Basic use

the first call togvRender attaches the computed position information to the nodesdgds. The second
call togvLayout adds straight-line edges to the already positioned notlessecond call tgvRender
outputs the graph ipng for onst dout .

2.3 Rendering the graph

Once the layout is done, the graph data structures contaipdsition information for drawing the graph.
The application needs to decide how to use this information.

To use the renderers supplied with tBeaphvizsoftware, the application can call one of the library
functions

gvRender (GVC_t *gvc, Agraph_t=* g, char *format, FILE xout);
gvRender Fi | enane (GVC t *gvc, Agraph_t* g, char *format, char =*fil enane);

The first and second arguments are a graphviz context handle pointer to the graph to be rendered. The
final argument gives, respecitively, a file stream open fatingr or the name of a file to which the graph
should be written. The third argument names the renderee tasbd, such dsps", " png" or " dot ".

SUsually, all of these algorithms are available. It is posibiowever, that an application can arrange to have onlybaegu
made available.
4Line segments are represented as degenerate splines.

GraphvizDrawing Library Manual, April 27, 2009 16

The allowed strings are the same ones used with thélag when the layout program is invoked from a
command shell.

After a graph has been laid out usiggLayout , an application can perform multiple calls to the
rendering functions. A typical instance might be

gvLayout (gvc, g, "dot");
gvRender Fi | ename (gvc, g, "png", "out.png");
gvRender Fi | enane (gvc, g, "cmap", "out.nmap");

in which the graph is laid out using tliet algorithm, followed by PNG bitmap output and a correspogdin
map file which can be used in a web browser.

Sometimes, an application will decide to do its own rendgritin application-supplied drawing routine,
such asdr awGr aph in Figure 1 can then read this information, map it to displagrdinates, and call
routines to render the drawing.

One simple way to do this is to use the position and drawingrinition as supplied by thdot or
xdot format (see Sections 1.1.1 and 1.1.2). To get this, the @gfwin can call the appropriate renderer,
passing a NULL stream pointer tpvRender ° as in Figure 2. This will attach the information as string
attributes. The application can then @sgpget to read the attributes.

On the other hand, an application may desire to read thetivéata structures used by the algorithms
to record the layout information. In the remainder of thistem, we describe in reasonable detail these data
structures. An application can use these values directfiuide its drawing. In some cases, for example,
with arrowheads attachedb@®zi er values or HTML-like labels, it would be onerous for an apation to
fully interpret the data. For this reason, if an applicatizishes to provide all of the graphics features while
avoiding the low-level details of the data structures, wggest either usingdot approach, described
above, or supplying its own renderer plug-in as describegkiction 5.

In general, thegr aph library allows an application to define specific data fieldsclrare compiled
into the node, edge and graph structures. These have thesname

e Agnodei nfo_t
e Agedgei nfo_t
e Agraphinfo_t

respectively. Th&raphvizlayout algorithms rely on a specific set of fields to recordtpmsand drawing
information, and therefore provide definitions for the thfields. Thus, the definitions of the information
fields are fixed by the layout library and cannot be alterechibyaipplicatior?.

These information structures occur as the field nametthe node, edge and graph structure. The def-
inition of the information structures as defined by the laymde is given it ypes. h, along with various
auxiliary types such agoi nt or bezi er. This file also provides macro expressions for accessingethe
fields. Thus, ifnp is a node pointer, the width field can be read usipg >u. wi dt horND_wi dt h(np) .
Edge and graph attributes follow the same convention, wefixesED _andCD _, respectively. We strongly

5This convention only works, and only makes sense, withditie andxdot renderers. For other renders, a NULL stream will
cause output to be written @t dout .

5This is a limitation of thegr aph library. We plan to remove this restriction by moving to a imeaism which allows arbitrary
dynamic extensions to the node, edge and graph structureanwhile, if the application requires the addition of extedds, it
can define its own structures, which should be extensionseo€bémponents of the information types, with the additidieds
attached at the end. Then, instead of calbwg ni t (), it can use the more genes@di ni t 1 i b(), and supply the sizes of its
nodes, edges and graphs. This will ensure that these comigon@ have the correct sizes and alignments. The apjicatan
then cast the genergr aph types to the types it defined, and access the additional fields

GraphvizDrawing Library Manual, April 27, 2009 17

deprecate the former access method, for the usual reas@odfgogramming style. By using the macros,
source code will not be affected by any changes to the howahe s provided.

Each node hasID_coor d_i , ND.w dt h andND_hei ght attributes. The value dfiD_coor d_i gives
the position of the center of the node, in poiht3he ND-wi dt h andND_hei ght attributes specify the
size of the bounding box of the node, in inches.

Edges, even if a line segment, are represented as B-sptipescewise Bezier curves. Th@l attribute
of the edge stores this spline information. It has a poimtertarray of 1 or morbezi er structures. Each
of these describes a single piecewise Bezier curve as walisaxiated arrowhead information. Normally,
a singlebezi er structure is sufficient to represent an edge. In some casegver, the edge may need
multiple bezi er parts, as when theoncent r at e attribute is set, whereby mostly parallel edges are
represented by a shared spline. Of course, the applicakieeys has the possibility of drawing a line
segment connecting the centers of the edge’s nodes.

If a subgraph is specified as a cluster, the nodes of the cludliebe drawn together and the entire
subgraph is contained within a rectangle containing noratbeles. The rectangle is specified by tite
attribute of the subgraph, the coordinates in points in tbbal coordinate system.

2.3.1 Drawing nodes and edges

With the position and size information described above, @lieation can draw the nodes and edges of
a graph. It could just use rectangles or circles for noded,rapresent edges as line segments or splines.
However, nodes and edges typically have a variety of othgbaties, such as color or line style, which an
application can read from the appropriate fieldA\gnodei nf ot andAgedgei nf ot and use in its
rendering.

Additional drawing information about the node depends iyiast the shape of the node. For record-
type nodes, wherlD_shape(n) - >naneis"record” or" M ecor d", the node consists of a packed
collection of rectangles. In this cagdD shape_i nf o(n) can be casttbi el d_t =, which describes
the recursive partition of the node into rectangles. Thaemlof fi el d_t gives the bounding rectangle
of the field, in points in the coordinate system of the node, Wwhere the center of the node is at the origin.

If ND_shape(n) - >user shape is true, the shape is specified by the user. Typically, thfsnmat
dependent, e.g., the node might be specified by a GIF imadeyargnore this case for the present.

The final node class consists of those with polygonal shapiich includes the limiting cases of circles,
ellipses, and none. In this casd) shape_i nf o(n) can be cast tpol ygon_t *, which specifies the
many parameters (number of sides, skew and distortiong, esed to describe polygons, as well as the
points used as vertices. Note that the vertices are in ingmekare in the coordinate system of the node,
with the origin at the center of the node.

To handle a node’s shape, an application has two basic choitean implement the geometry for
each of the different shapes. Thus, it could see Miatshape(n) - >nane is "box", and use the
ND_coor d_i ,ND.wi dt h andND_hei ght attributes to draw rectangle at the given position with tivery
width and height. A second approach would be to use the spaiifin of the shape as stored internally in
theshape_i nf o field of the node. For example, given a polygonal nodeNidsshape_i nf o(n) field
contains aver ti ces field, mentioned above, which is an ordered list of all thedives used to draw the
appropriate polygon, taking into account multiple peripd® Again, if an application desires to be fully

"The neatoandfdp layouts allow the graph to specify fixed positions for noddsfortunately, some post-processing done in
Graphviztranslates the layout so that its lower-left corner is atdtigin. To recover the original coordinates, the applmativill
need to translate all positions by the vegier— p, wherepy andp are the input position and the final position of some node whos
position was fixed.

8This is not quite true but close enough for now.

GraphvizDrawing Library Manual, April 27, 2009 18

faithful in the rendering, it may be preferable to use xtwot information or to supply its own renderer
plugin.

For edges, eachezi er structure has, in addition to its list of control points, dielfor specifying
arrowheads. Ibp points to abezi er structure and thép- >sf | ag field is true, there should be an
arrowhead attached to the beginning of the bezier. Thelfigld>sp gives the point where the nominal tip
of the arrowhead would touch the tail node. (If there is nowaheadpp- > i st [0] will touch the node.)
Thus, the length and direction of the arrowhead is deterhinethe vector going frorbp- >l i st [0] to
bp- >sp. The actual shape and width of the arrowhead is determinédulay r omt ai | andar r owsi ze
attributes. Analogously, an arrowhead at the head nodeeisfigrl bybp- >ef | ag and the vector from
bp->li st bp->si ze-1] tobp->ep.

The label field ND_| abel (n),ED | abel (e),GD_| abel (g)) encodes any text label associated
with a graph object. Edges, graphs and clusters will ocoadliiphave labels; nodes almost always have a
label, since the default label is the node’s name. The babl ktring is stored in theext field, while the
f ont name, f ont col or andf ont si ze fields describe the basic font characteristics. In manys;dlse
basic label string is further parsed, either into multifestified text lines, or as a nested box structure for
HTML-like labels or nodes of record shape. This informati®available in other fields.

2.4 Cleaning up a graph

Once all layout information is obtained from the graph, theources should be reclaimed. To do this, the
application should call the cleanup routine associatett Wié layout algorithm used to draw the graph.
This is done by a call tgvFr eeLayout .

The example of Figure 1 demonstrates the case where theaiphi is drawing a single graph. The
example given in Appendix C shows how cleanup might be donenvinocessing multiple graphs.

The application can best determine when it should clean U éxample in the appendix performs
this just before a new graph is drawn, but the applicatioriccbhave done this much earlier, for example,
immediately after the graph is drawn usiggRender . Note, though, that layout information is destroyed
during cleanup. If the application needs to reuse this datagxample, to refresh the display, it should
delay calling the cleanup function, or arrange to copy tlgeua data elsewhere. Also, in the simplest case
where the application just draws one graph and exits, tlsen® ineed to do cleanup at all, though this is
sometimes considered poor programming style.

A given graph can be laid out multiple times. The applicatibowever, must clean up the earlier
layout’s information with a call tgvFr eeLayout before invoking a new layout function. An example of
this was given in Figure 2.

Once the application is totally done with a graph, it shoai@gc| ose to close the graph and reclaim
the remaining resources associated with it.

3 Inside the layouts

EachGraphvizlayout algorithm consists of multiple steps, some of whigh @ptional. As the only entry
point in theGraphvizlibrary for laying out a graph is the functiagvLayout , the control of which steps
are used is determined by graph attributes, in the same wsistbontrolled when passing a graph to one
of the layout programs. In this section, we provide a higlel@escription of the layout steps, and note the
relevant attributes.

Here, we will assume that the graph is connected. All of theués handle unconnected graphs. Some-
times, though, an application may not want to use the huitechnique. For these cas&@aphvizprovides
tools for decomposing a graph, and then combining multgjeuts. This is described in Section 7.

GraphvizDrawing Library Manual, April 27, 2009 19

In all of the algorithms, the first step is to call a layout-gfie initialization function. These func-
tions initialize the graph for the particular algorithm. igwill first call common routines to set up basic
data structures, especially those related to the final laggsults and code generation. In particular, the
size and shape of nodes will have been analyzed and set aidihis which the application can access
via theND_wi dt h, ND_hei ght , ND_ht , ND_I w, ND_r w, ND_shape, ND_shape_i nf o andND. abel
attributes. Initialization will then establish the dataustures specific to the given algorithm. Both the
generic and specific layout resources are released wherothespgonding cleanup function is called in
gvFr eeLayout (cf. Section 2.4).

By default, the layout algorithms position the edges as a&lhe nodes of the graph. As this may be
expensive to compute and irrelevant to an application, alicgtion may decide to avoid this. This can be
achieved by setting the graptsgl i nes attribute to the empty string" .

The algorithms all end with a postprocessing step. The rbthig is to do some final tinkering with
the layout, still in layout coordinates. Specifically, thmétion rotates the layout fatot (if r ankdi r is
set), attaches the root graph’s label, if any, and normalike drawing so that the lower left corner of its
bounding box is at the origin.

Except for dot, the algorithms also provide a node’s pasitin inches, in the array give byD_pos.

3.1 dot

The dot algorithm produces a ranked layout of a graph respecting ditgctions if possible. It is particu-
larly appropriate for displaying hierarchies or directegi@ic graphs. The basic layout scheme is attributed
to Sugiyama et al.[STT81] The specific algorithm useddbyfollows the steps described by Gansner et
al.[GKNV93]

The steps in theotlayout are:

initialize
rank

m ncr oss
position
saneports
spl i nes
conmpoundEdges

After initialization, the algorithm assigns each node taszigtte ranki(ank) using an integer program
to minimize the sum of the (discrete) edge lengths. The rnext @i ncr 0ss) rearranges nodes within
ranks to reduce edge crossings. This is followed by the mssgt posi t i on) of actual coordinates to
the nodes, using another integer program to compact thé giraghstraighten edges. At this point, all nodes
will have a position set in theoor d attribute. In addition, the bounding béwbo attribute of all clusters are
set.

Thesameport s step is an addition to the basic layout. It implements théufea based on the edge
attributes' sanehead" and" sanet ai | ", by which certain edges sharing a node all connect to the node
at the same point.

Edge representations are generated irsthlei nes step. At presentjotdraws all edges as B-splines,
though some edges will actually be the degenerate casersd adgment.

Although dot supports the notion of cluster subgraphs, its model doesaroéspond to general com-
pound graphs. In particular, a graph cannot have edges ciimpéwo clusters, or a cluster and a node. The
layout can emulate this feature. Basically, if the head aildhbdes of an edge lie in different, non-nested
clusters, the edge can specify these clusters as a logiadl drelogical tail using thé head orl t ai |

GraphvizDrawing Library Manual, April 27, 2009 20

attribute. The spline generatedsipl i nes for the edge can then be clipped to the bounding box of the
specified clusters. This is accomplished in ttmarpoundEdges step.

3.2 neato

The layout computed bgeatois specified by a virtual physical model, i.e., one in whiclde® are treated
as physical objects influenced by forces, some of which drise the edges in the graph. The layout is
then derived by finding positions of the nodes which minimimforces or total energy within the system.
The forces need not correspond to true physical forces, \grdally the solution represents some local
minimum. Such layouts are sometimes referred to as synunagithe principal aesthetics of such layouts
tend to be the visualization of geometric symmetries withie graph. To further enhance the display of
symmetries, such drawings tend to use line segments fosedge

The model used byeatocomes from Kamada and Kawai[KK89], though it was first introeld by
Kruskal and Seely[KS80] in a different format. The modelussss there is a spring between every pair of
vertices, each with an ideal length. The ideal lengths aumetiion of the graph edges. The layout attempts
to minimize the energy in this system.

initialize
position
adj ust
spl i nes

As usual, the layout starts with an initialization step. Hutual layout is parameterized by thede
andnodel attributes. The mode attribute determines how the optitioizgroblem is solved, either by the
default, stress majorization[GKN0O4] modepde="nmj or "), or the gradient descent technique proposed
by Kamada and Kawai[KK89]nfode=" KK"). The latter mode is typically slower than the former, and
introduces the possibility of cycling. It is maintainedelglfor backward compatibility.

The model indicates how the ideal distances are computedkbatall pairs of nodes. By defautteato
uses a shortest path modebdel =" shor t pat h"), so that the length of the spring between nogesd
q i1s the length of the shortest path between them in the grapke that the shortest path calculation takes
into account the lengths of edges as specified by then" attribute, with one inch being the default.

If mode="KK" and the graph attribugack is false,neatosets the distance between nodes in separate
connected components 10 + Ly - V], whereL,,, is the average edge length ajvd is the number
of nodes in the graph. This supplies sufficient separatitwdmn components so that they do not overlap.
Typically, the larger components will be centrally locgtedhile smaller components will form a ring around
the outside.

In some cases, an application may decide to use the circudehfoodel ="circuit"), a model
based on electrical circuits as first proposed by Cohen[ZpH& this model, the spring length is derived
from resistances using Kirchoff's law. This means that thearpaths betweep andq in the graph, the
smaller the spring length. This has the effect of pullingstdus closer together. We note that this approach
only works if the graph is connected. If the graph is not cated, the layout automatically reverts to the
shortest path model.

The third model is the subset modeidel =" subset "). This sets the length of each edge to be the
number of nodes that are neighbors of exactly one of the eimtispand then calculates remaining distances
using shortest paths. This helps to separate nodes wittdeigtee.

The basic algorithm used meatoperforms the layout assuming point nodes. Since in manysctse
final drawing uses text labels and various node shapes, #vwérdy ends up with many nodes overlapping
each other. For certain uses, the effect is desirable. Ifthetapplication can use tradj ust step to
reposition the nodes to eliminate overlaps. This is coletidby the graph attributeover | ap".

GraphvizDrawing Library Manual, April 27, 2009 21

With nodes positioned, the algorithm proceeds to draw tlgeedising itsspl i nes function. By
default, edges are drawn as line segments. If, howevel,dp¢ i nes" graph attribute is set to true, the
edges will be constructed as splines|[DGKN97], routing tleound the nodes. Topologically, the spline
follows the shortest path between two nodes while avoidihgtlaers. Clearly, for this to work, there can be
no node overlaps. If overlaps exist, edge creation revertk to line segments. When this function returns,
the positions of the nodes will be recorded in themor ds attribute, in points.

The programmer should be aware of certain limitations awndlpms with theneatoalgorithm. First,
as noted above, ifode=" KK" , it is possible for the minimization technique usedri®atoto cycle, never
finishing. At present, there is no way for the library to detids, though once identified, it can easily be
fixed by simply picking another initial position. Secondthalugh multiedges affect the layout, the spline
router does not yet handle them. Thus, two edges betweerathe sodes will receive the same spline.
Finally, neatoprovides no mechanism for drawing clusters. If clustersregaired, one should use tfep
algorithm, which belongs to the same familyresatoand is described next.

3.3 fdp

The fdp layout is similar in appearance tteatoand also relies on a virtual physical model, this time
proposed by Fruchterman and Reingold[FR91]. This moded speings only between nodes connected
with an edge, and an electrical repulsive force betweenaatbf nodes. Also, it achieves a layout by
minimizing the forces rather than energy of the system.

Unlike neatq fdp supports cluster subgraphs. In addition, it allows edgésdmn clusters and nodes,
and between cluster and clusters. At present, an edge frdustaiccannot connect to a node or cluster with
the cluster.

initialize
position
spl i nes

The layout scheme is fairly simple: initialization; laypand a call to route the edges. flip, because
it is necessary to keep clusters separate, the removal dhpsds (usually) obligatory.

3.4 twopi

The radial layout algorithm representedthyopi is conceptually the simplest i@raphviz Following an
algorithm described by Wills[Wil97], it takes a node spexifas the center of the layout and the root of the
generated spanning tree. The remaining nodes are placedasiea of concentric circles about the center,
the circle used corresponding to the graph-theoreticrdist&rom the node to the center. Thus, for example,
all of the neighbors of the center node are placed on the fickt @round the center. The algorithm allocates
angular slices to each branch of the induced spanning trgea@ntee enough space for the tree on each
ring. At present, the algorithm does not attempt to viseatizisters.

initialize
position
adj ust
spl i nes

As usual, the layout commences by initializing the graphisTé followed by theposi ti on step,
which is parameterized by the central node, specified by taphisr oot attribute. If unspecified, the

GraphvizDrawing Library Manual, April 27, 2009 22

algorithm will select some “most central” node, i.e., oneosd minimum distance from a leaf node is
maximal.

As with neatq the layout allows aadj ust step to eliminate node-node overlaps. Again as wiatq
the call tospl i nes computes drawing information for edges. See Section 3.&hfe details.

3.5 circo

The circo algorithm is based on the work of Six and Tollis[ST99, STGY,modified by Kaufmann and

Wiese[KW]. The nodes in each biconnected component areglan a circle, with some attempt to mini-
mize edge crossings. Then, by considering each componensiagle node, the derived tree is laid out in
a similar fashion tdwopi, with some component considered as the root node.

initialize
position
spl i nes

As with fdp, the scheme is very simple. By construction, direo layout avoids node overlaps, so no
adj ust step is necessary.

4 The Graphvizcontext

Up to now, we have used@raphvizcontextGVC.t without considering its purpose. As suggested earlier,
this value is used to store various layout information teahdependent of a particular graph and its at-
tributes. It holds the data associated with plugins, pacsedmand lines, script engines, and anything else
with a scope potentially larger than one graph, up to theesadphe application. In addition, it maintains
lists of the available layout algorithms and rendererdsit aecords the most recent layout algorithm applied
to a graph. It can be used to specify multiple renderings dff@nggraph layout into different associated
files. Itis also used to store various global informationdudering rendering.

There should be just or@/C_t created for the entire duration of an application. A sifgléC.t value
can be used with multiple graphs, though with only one graghtene. In addition, iigvLayout () was
invoked for a graph an@®VC.t , thengvFr eeLayout () should be called before usirgyLayout ()
again, even on the same graph.

An instance of &5VC_t can be created by a call to

extern GVC t *gvNEWont ext (char **info, char *user);

The first argument is an array of three character pointergigirg version information; see Section 4.1
below for a description of this data. The second argumenstsirzg giving a name for the user. If desired,
the application can call the library functiggv User nane() to obtain this value. These strings are stored
in theGVCt and used in various messages and comments.

For convenience, th&raphvizlibrary provides a simple way to create a context:

extern GVC t xgvContext();

which is what we have used in the examples shown here. Thiswesion information created when
Graphvizwas built, plus the value returned by User nane() .

One can initialize &5VC_t to record a list of graphs, layout algorithms and render@osdo this, the
application should call the functiogvPar seAr gs:

extern void gvParseArgs(GVC t* gvc, int argc, char* argv[]);

GraphvizDrawing Library Manual, April 27, 2009 23

This function takes the context value, plus an array of g#rinsing the same conventions as the parameters
tomai n function in a C program. In particulaay gc should be the number of valuesangv. If ar gv[0]
is the name of one of the layout algorithms, this will be botmthe GVC_t value and used at layout time.
The remainingar gv values, if any, are interpreted exactly like the allowed ownd line flags for any
Graphvizprogram. Thus; - T" can be used to set the output type, dnad" can be used to specify the
output files.

For example, the application can use a synthetic argunsnt li

GVC t* gvc = gcContext();
char* args[] = {

"dot",
"-Tgi f", [+ gif output =/
"-oabc.gif" [+ output to file abc.gif «/

}s

gvParseArgs (gvc, sizeof(args)/sizeof(charx), args);

to specify a dot layout il F output written to the filabc. gi f . Another approach is to use a program’s
actual argument list, after removing flags not handled@ibgphviz

Most of the information is stored in @/C_t value for use during rendering. However, if taegv
array contains non-flag arguments, i.e., strings after tte¢ ffiot beginning with'- ", these are taken
to be input files defining a stream of graphs to be drawn. Theaphg can be accessed by calls to
gvNext | nput Gr aph.

Once theGVC_t has been initialized this way, the application can gaiNext | nput G- aph to get
each input graph in sequence, and then ingkkeayout Jobs andgvRender Jobs to do the specified
layouts and renderings. See Appendix C for a typical examwipileis approach.

We note thagvLayout basically attaches the graph and layout algorithm toGW€ t , as would be
done bygvPar seAr gs, and then invokegvLayout Jobs. A similar remark holds fogvRender and
gvRender Jobs.

4.1 Application-specific data

It is sometimes useful to supply version information. Faaraple, some renderers @raphvizthe library
version used to create the output file. To do this, they reltherapplication providing an array

extern char* |Info[3];

giving the desired version information. The three strifigsud be the name of the application, the version
of the application, and a build date. For examplet might provide

char *Info[] = {

"dot", [+ Program =/
"1.8.10", /* Version =/
"16 Dec 2006" [+ Build Date =*/

b

5 Graphics renderers

All graph output done irGraphvizgoes through a renderer with the tyger ender _engi ne_t, used in
the call togvRender . In addition to the renderers which are part of the libranyapplication can provide
its own, allowing it to specialize or control the output asessary. See Section 6.1 for further details.

GraphvizDrawing Library Manual, April 27, 2009 24

As in the layout phase invoked lgwvLayout , all control over aspects of rendering are handled via
graph attributes. For example, the attribatet put or der determines whether all edges are drawn before
any nodes, or all nodes are drawn before any edges.

Before describing the renderer functions in detail, it mayhklpful to give an overview of how output
is done. Output can be viewed as a hierarchy of document coemp®. At the highest level is the job,
representing an output format and target. Bound to a job inhigimultiple graphs, each embedded in some
universal space. Each graph may be partitioned into meltigters as determined by a graphayer s
attribute, if any. Each layer may be divided into a 2-dimenal array of pages. A page will then contain
nodes, edges, and clusters. Each of these may contain an lfbklor. During rendering, each component
is reflected in paired calls to its correspondinggi n_... andend.... functions. The layer and
anchor components are omitted if there is only a single lay¢he enclosing component has no browser
information.

Figure 3 lists the names and type signatures of the fields afender _engi ne_t , which are used to
emit the components described abdvall of the functions take a&VJ_t » value, which contains various
information about the current rendering, such as the owtjpeam, if any, or the device size and resolution.
Section 5.1 describes this data structure.

Most of the functions handle the nested graph structuregraphics output is handled by thext par a,
el i pse,pol ygon,bezi ercurve,andpol yl i ne functions. The relevant drawing information such
as color and pen style is available through tting field of theGVJ_t » parameter. This is described in Sec-
tion 5.2. Font information is passed with the text.

We note that, inGraphviz each node, edge or cluster in a graph has a unigu&eld, which can be
used as a key for storing and accessing the object.

In the following, we describe the functions in more detdibugh many are self-explanatory. All posi-
tions and sizes are in points.

begi nj ob(j ob) Called at the beginning of all graphics output for a graphictvimay entail drawing
multiple layers and multiple pages.

end_ ob(j ob) Called at the end of all graphics output for graph. The ougrgtam is still open, so the
renderer can append any final information to the output.

begi n_graph(j ob) Called at the beginning of drawing a graph. The actual graphvailable as
j ob->o0bj - >u. g.

end_gr aph(j ob) Called when the drawing of a graph is complete.

begi nl ayer (j ob, | ayer Nane, n, nLayer s) Called at the beginning of each layer, onlyifayers >
0. Thel ayer Name parameter is the logical layer name given in treeyer s attribute. The layer
has indexn out ofnLayer s, starting from O.

end_ ayer (j ob) Called at the end of drawing the current layer.

begi n_page(j ob) Called at the beginning of a new output page. A page will dandarectangular
portion of the drawing of the graph. The valpeb- >pageO f set gives the lower left corner of
the rectangle in layout coordinates. The pgiob- >pagesAr r ayEl emis the index of the page in
the array of pages, with the page in the lower left cornenirdedy (0,0). The valugob->zoom
provides a scale factor by which the drawing should be scaldue valuej ob- >r ot ati on, if
non-zero, indicates that the output should be rotategiOBycounterclockwise.

9Any types mentioned in this section are either describetiggection or in Appendix E.

GraphvizDrawing Library Manual, April 27, 2009 25

void (*beginjob) (GV1t*);

void (*end. job) (GVJ.t*);

void (*begin.graph) (GVat*);

void (*end.graph) (GVJt*);

void (*begin.layer) (GVJat*, char*, int, int);

void (*end.layer) (GVI1t*);

void (*beginpage) (GVat*);

void (*end.page) (GV.1t*);

void (*begin.cluster) (GVJt*, char*, long);

void (*end.cluster) (GVat*);

void (*begin.nodes) (GV.X*);

void (*end.nodes) (GV.X*);

void (*begin.edges) (GV.1*);

void (*end.edges) (GV.X*);

void (*begin.node) (GVJat*, char*, long);

void (*end.node) (GVat*);

void (*begin.edge) (GVat*, char*, bool, char*, long);
void (*end.edge) (GV.1t*);

void (*begin.anchor) (GVat*, char*, char*, char®);
void (*end.anchor) (GV.It*);

void (*textpara) (GVIt*, pointf, textparat*);

void (*resolvecolor) (GVJ1t*, gvcolor_t*);

void (*ellipse) (GVIt*, pointf*, int);

void (*polygon) (GVJt*, pointf*, int, int);

void (*beziercurve) (GV.X*, pointf*, int, int, int, int);
void (*polyline) (GVJ.t*, pointf*, int);

void (*comment) (GVat*, char*);

Figure 3: Interface for a renderer

end_page(j ob) Called when the drawing of a current page is complete.

begi ncl uster (j ob) Called at the beginning of drawing a cluster subgraph. Theaacluster is
available ag ob- >obj - >u. sg.

end_cl uster (j ob) Called at the end of drawing the current cluster subgraph.

begi n_.nodes(j ob) Called at the beginning of drawing the nodes on the currege p®nly called if
the graph attributeut put or der was set to a non-default value.

end_nodes(j ob) Called when all nodes on a page have been drawn. Only calted graph attribute
out put or der was set to a non-default value.

begi n_edges(j ob) Called at the beginning of drawing the edges on the currege.p®nly called if
the graph attributeut put or der was set to a non-default value.

end_edges() Called when all edges on the current page are drawn. Onlgdcdlithe graph attribute
out put or der was set to a non-default value.

begi n_.node(j ob) Called at the start of drawing a node. The actual node isablaibg ob- >0bj - >u. n.

GraphvizDrawing Library Manual, April 27, 2009 26

end_node(j ob) Called at the end of drawing the current node.
begi n_edge(j ob) Called at the start of drawing an edge. The actual edge imalaag ob- >obj - >u. e.
end_edge(j ob) Called at the end of drawing the current edge.

begi n.anchor (j ob, href,tool tip,target) Called at the start of an anchor context associated
with the current node, edge, or graph, or its label, assuthi@graph object or its label hasJ®L or
hr ef attribute. Théhr ef parameter gives the associated href, whibel t i p andt ar get supply
any tooltip or target information. If the object has no tgmlits label will be used. If the object has
no target attribute, this parameter will bieLL.

If the anchor information is attached to a graph objecthtegi n.anchor andend_anchor calls
enclose thévegi n_. . . andend._. .. calls on the object. If the anchor information is attached to
part of an object’s label, theegi n_anchor andend_anchor calls enclose the rendering of that
part of the label plus any subparts.

end_anchor (j ob) Called at the end of the current anchor context.

t ext para(j ob, p, txt) Draw text at poinfp using the specified font and fontsize and color. The
t xt argument provides the text strimgct - >st r, stored in UTF-8, a calculated width of the string
t xt - >wi dt h and the horizontal alignmentxt - >j ust of the string in relation tg@. The values
t xt - >f ont nane andt xt - >f ont nane give the desired font name and font size, the latter in
points.

The base line of the text is given lp/ y. The interpretation op. x depends upon the value of
t xt - >j ust . Basically,p. x provides the anchor point for the alignment.

txt->just p.x

'n Center of text

T Left edge of text
r Right edge of text

The leftmost x coordinate of the text, the parameter mogitgea systems use for text placement, is
givenbyp. x + j * txt->w dt h,wherejis 0.0 (-0.5,-1.0) it xt->justis’ 1" (n’,;r’),
respectively. This representation allows the renderectoirately compute the point for text place-
ment that is appropriate for its format, as well as use its oveghanism for computing the width of
the string.

resol ve_col or (j ob, col or) Resolve a color. Theol or parameter points to a color representa-
tion of some particular type. The renderer can use thisiimébion to resolve the color to a represen-
tation appropriate for it. See Section 5.3 for more details.

el lipse(job, ps, filled) Draw an ellipse with center gis[0] , with horizontal and vertical
half-axesps[1] . x - ps[0].xandps[1].y - ps[0].yusingthe current pen color and line
style. Iff i I | ed is non-zero, the ellipse should be filled with the currentcfillor.

pol ygon(job, A n, filled) Draw a polygon with then vertices given in the arraf, using the
current pen color and line style. flfi | | ed is non-zero, the polygon should be filled with the current
fill color.

GraphvizDrawing Library Manual, April 27, 2009 27

bezi ercurve(job, A n, arrowat start, arrowat_end, filled) DrawaB-spline with
then control points given irA. This will consist of(n — 1) /3 cubic Bezier curves. The spline should
be drawn using the current pen color and line style. If theleeer has specified that it does not want
to do its own arrowheads (cf. Section 6.1), the parameterow_at _st art andar r ow.at _.end
will both be 0. Otherwise, iir r ow.at _st art (ar r ow.at _end) is true, the function should draw
an arrowhead at the first (last) pointA&fIf fi | | ed is non-zero, the bezier should be filled with the
current fill color.

pol yl i ne(j ob, A, n) Draw a polyline with then vertices given in the arra, using the current pen
color and line style.

comment (j ob, text) Emittext comments related to a graph object. For nodess eall pass the
node’s name and anyonment attribute attached to the node. For edges, calls will paddrays
description of the edge and anprmment attribute attached to the edge. For graphs and clusters, a
call will pass a angonment attribute attached to the object.

Although access to the graph object being drawn is availéitaigh theGVJ t value, a renderer can
often perform its role by just implementing the basic graphiperations. It need have no information about
graphs or the relate@Graphvizdata structures. Indeed, a particular renderer need noiedafiy particular
rendering function, since a given entry point will only bdl@a if non-NULL.

5.1 TheGVJ_t data structure

We now describe some of the more important fields in@é_t structure, concentrating on those regarding
output. There are additional fields relevant to input and &UI

commron This points to various information valid throughout theation of the application usin@raphviz
In particular,conmon- >user gives the user name associated to the rel@édt value (see Sec-
tion 4), andcormon- >i nf o0 containsGraphvizversion information, as described in Section 4.1.

out put fil e TheFl LE* value for an open stream on which the output should be wriitealevant.

pagesArraySi ze The size of the array of pages in which the graph will be oytgiven as goi nt .
If pagesArraySi ze. x or pagesArraySi ze. y is greater than one, this indicates that a page
size was set and the graph drawing is too large to be printedsamgle page. Page (0,0) is the page
containing the bottom, lefthand corner of the graph drawpage (1,0) will contain that part of the
graph drawing to the right of page (0,0); etc.

bb The bounding box of the layout in the universal space in goiltthas typeoxf .

boundi ngBox The bounding box of the layout in the device space in devioedinates. It has typeox.
| ayer Num The current layer number.

nurLayer s The total number of layers.

pagesAr r ayEl em The row and column of the current page.

pageO f set The origin of the current page in the universal space in point

zoom Factor by which the output should be scaled.

rot ati on Indicates whether or not the rendering should be rotated.

GraphvizDrawing Library Manual, April 27, 2009 28

obj Information related to the current object being renderdds 1 a pointer of a value of typebj st at e_t .
See Section 5.2 for more details.

5.2 Inside theobj _st at e_t data structure

A value of typeobj _st at et encapsulates various information pertaining to the ctrodject being
rendered. In particular, it provides access to the currbjgad, and provides the style information for any
rendering operation. Figure 4 notes some of the more usefdkfin the structure.

obj type type;
union {
grapht *g;
grapht *sg;
nodet *n;
edget *e;
Ik
gvcolor.t pencolor;
gvcolor_t fillcolor;
pentype pen;
double penwidth;
char *url;
char *tailurl;
char *headurl;
char *tooltip;
char *tailtooltip;
char *headtooltip;
char *target;
char *tailtarget;
char *headtarget;

Figure 4: Some fields inbj _st at e_t

t ype andu Thet ype field indicates what kind of graph object is currently beirgdered. The possible
values arcROOTGRAPH OBJ TYPE, CLUSTER OBJ TYPE, NODE_OBJ TYPE and EDGE_OBJ TYPE,
indicating the root graph, a cluster subgraph, a node andge eespectively. A pointer to the actual
object is available via the subfields g, u. sg, u. n andu. e, respectively, of the union.

pencol or Thegvcol or _t value indicating the color used to draw lines, curves antl tex

pen The style of pen to be used. The possible valuesPaitd NONE, PEN_DOTTED, PEN_DASHED and
PEN_SCOLI D.

penwi dt h The size of the pen, in points. Note that, by convention, aesaf 0 indicates using the smallest
width supported by the output format.

fillcol or Thegvcol or _t value indicating the color used to fill closed regions.

Note that font information is delivered as part of thext par a_t value passed to thteext par a function.

As for the url, tooltip and target fields, these will point teetassociated attribute value of the current
graph object, assuming it is defined and that the renderg@osumap, tooltips, and targets, respectively (cf.
Section 6.1).

GraphvizDrawing Library Manual, April 27, 2009 29

5.3 Color information

There are five ways in which a color can be specifiemphviz RGB + alpha, HSV + alpha, CYMK,
color index, and color name. In addition, the RGB + alphaeslcan be stored as bytes, words or doubles.
A color value inGraphvizhas the typgvcol or t , containing two fields: a union, containing the
color data, and theype field, indicating which color representation is used in thimn. Table 14 describes

the allowed color types, and the associated union field.

Type Description Field
RGBABYTE RGB + alpha format represented as 4 bytes from 0 to 256 r gba
RGBA_WORD RGB + alpha format represented as 4 words from Q to rr ggbbaa

65535

RGBA_DOUBLE | RGB + alpha format represented as 4 doubles from 0 taul RGBA
HSVALDOUBLE | HSV + alpha format represented as 4 doubles from 0 foul HSVA

CYMK.BYTE CYMK format represented as 4 bytes from 0 to 255 u. cynk
COLOR.STRI NG | text name u.string
COLORI NDEX | integer index u. i ndex

Table 14: Color type representations

Before a color is used in renderinGraphvizwill process a color description provided by the input
graph into a form desired by the renderer. This is three stepegdure. FirstGraphvizwill see if the
color matches the renderer's known colors, if any. If so, ¢hor representation iI€EOLOR.STRI NG
Otherwise, the library will convert the input color destigp into the renderer’s preferred format. Finally,
if the renderer also providesraesol ve_col or function, Graphvizwill then call that function, passing a
pointer to the current color value. The renderer then hasgpertunity to adjust the value, or convert it into
another format. In a typical case, if a renderer uses a colgr, ihmay request RGB values as input, and
then store an associated color map index usingb®eOR | NDEX format. If the renderer does a conversion
to another color type, it must reset thgpe field to indicate this. It is this last representation whicitl w
be passed to the renderer’s drawing routines. The renddaeown colors and preferred color format are
described in Section 6.1 below.

6 Adding Plug-ins

The Graphvizframework allows the programmer to use plug-ins to exterdsystem in several ways.
For example, the programmer can add new graph layout engineg with new renderers and their re-
lated functions. Table 15 describes the plug-in APIs suegdoby Graphviz Each plug-in is defined

Kind Functions Features Description

APl _r ender gvr ender _engi ne_t gvrender features_t | Functions for rendering a graph

APl _devi ce gvdevi ce_engi ne_t - Functions for initializing and terminat;
ing a device

APl _| oadi mage gvl oadi mage_engi ne_t - Functions for converting from one im-
age format to another

APl _| ayout gvl ayout _engi ne_t gvl ayout features_t | Functions for laying out a graph

APl _t ext| ayout | gvtextlayout_engi ne_t - Functions for resolving font names and
text size

Table 15: Plug-in API types

by an engine structure containing its function entry pgiatisd a features structure specifying features

GraphvizDrawing Library Manual, April 27, 2009 30

supported by the plug-in. Thus, a renderer is defined by satfetype gvr ender _.engi ne_t and
gvrender featurest.

Once all of the plug-ins of a given kind are defined, they sthdad gathered into a O-terminated array
of element typegvpl ugi nd nst al | edt, whose fields are shown in Figure 5. The fields have the

intid;

char *type;

int quality;
void *engine;
void *features;

Figure 5: Plug-in fields

following meanings.

i d Identifier for a given plug-in within a given package and wathiven API kind. Note that thed need
only be unigue within its plug-in package, as these packageassumed to be independent.

t ype Name for a given plug-in, used during plug-in lookup.

qgual i ty An arbitrary integer used for ordering plug-ins with the sadmgpe. Plug-ins with larger values
will be chosen before plug-ins with smaller values.

engi ne Points to the related engine structure.
f eat ur es Points to the related features structure.

As an example, suppose we wish to add various renderergfioapioutput. A collection of these might
be combined as follows.

gvplugin_installed t render_bitmap types[] = {
{0, "jpg", 1, & pg_engine, & pg_features},
{0, "jpeg", 1, & pg_engine, & pg features},
{1, "png", 1, &png_engi ne, &png_features},
{2, "gif", 1, &gif _engine, &gif features},
{0, NULL, 0, NULL, NULL}

b

Note that this allows j pg" and"j peg" to refer to the same renderers. For the plug-in kinds witlaout
features structure, the feature pointer ingtgpl ugi ni nst al | ed_t should be NULL.

All of the plug-ins of all API kinds should then be gatheretbia O-terminated array of element type
gvpl ugi n_api _t . For each element, the first field indicates the kind of APdl #re second points to the
array of plug-ins described abovgVpl ugi ni nstal | edt).

Continuing our example, if we have supplied, in additionhe bitmap rendering plug-ins, plug-ins to
render VRML, and plug-ins to load images, we would define

gvplugin_api _t apis[] = {
{API _render, &render_bitmap_types},
{API render, &render_vrm _types},
{API _| oadi mage, &l oadi mage_bi t nap_t ypes},
{o, 0},
1

GraphvizDrawing Library Manual, April 27, 2009 31

Hererender vrml .t ypes andrender vrnl _t ypes are also O-terminated arrays of element type
gvpl ugi nd nst al | ed_t . Note that there can be multiple items of the same API kind.

A final definition is used to attach a name to the package othallglug-ins. This is done using a
gvpl ugi nli brary_t structure. Its first field is @ahar * giving the name of the package. The second
field is agvpl ugi n_api _t » pointing to the array described above. The structure iteelft be named
gvpl ugi n_name LTX i br ar y, wherenameis the name of the package as defined in the first field.

For example, if we have decided to call our packabét map" , we could use the following definition:

gvplugin_library_t gvplugin_bitmap LTX library = { "bitmap", apis };

To finish the installation of the package, it is necessaryrémate a dynamic library containing the
gvpl ugi ndi brary_t value and all of the functions and data referred by it, eitieectly or indi-
rectly. The library must be nameglpl ugi n_nane, where agaimameis the name of the package.
The actual filename of the library will be system-dependétur example, on Linux systems, our library
gvpl ugi n_bi t map would have filenaméi bgvpl ugi nbi t map. so. 3.

In most casesGraphvizis built with a plug-in version number. This number must beluded in
the library’s filename, following any system-dependentvesrions. The number is given as the value of
p! ugi nsinthefilel i bgvc. pc, which can be found in the directohy b/ pkgconf i g whereGraphviz
was installed. In our example, the “3” in the library’s filena gives the version number.

Finally, the library must be installed in th@raphvizlibrary directory, anddot - ¢ must be run to
add the package to th@raphvizconfiguration. Note that both of these steps typically asstimat one has
installer privileges?

In the remainder of this section, we shall look at the first¢htypes of plug-in APIs in more detalil.

6.1 Writing a renderer plug-in

A renderer plug-in has two parts. The first consists of a airecof typegvr ender _engi ne_t defining
the renderer’s actions, as described in Section 5. Reelhthy field may contain a NULL pointer.

For the second part, the programmer must provide a struofuypegvr ender f eat ures_t. This
record providessraphvizwith information about the renderer. Figure 6 list the figld®lved. Some of the

int flags;

double defaulimargin;
double defaulipad;
pointf defaultpagesize;
pointf defaultdpi;

char **knowncolors;
int szknowncolors;
color_type.t color_type;
char *device;

char *loadimaggarget;

Figure 6: Features of a renderer

default values may be overridden by the input graph.
We now describe the fields in detail.

f 1 ags Bit-wise ofor flags indicating properties of the renderer. These flagseseribed in Table 16.

1ONormally, for builds intended for local installatiaint - ¢ is run duringmake i nstal | . It may be necessary to run this
manually if cross-compiling or otherwise manually movirigdsies to a different system.

GraphvizDrawing Library Manual, April 27, 2009 32

def aul t _mar gi n Default margin size in points. This is the amount of spacedegund the drawing.

def aul t pad Default pad size in points. This is the amount by which thepres inset within the
drawing region. Note that the drawing region may be fillecwaitbackground color.

def aul t pagesi ze Default page size size in points. For example, an 8.5 by 11 leiter-sized page
would have alef aul t pagesi ze of 612 by 792.

def aul t . dpi Default resolution, in pixels per inch. Note that the x andayues may be different to
support non-square pixels.

knowncol or s An array of character pointers giving a lexicographicalfgiered!* list of the color names
supported by the renderer.

sz_knowncol or s The number of items in thenowncol or s array.
col or t ype The preferred representation for colors. See Section 5.3.

devi ce The name of a device, if any, associated with the renderareXample, a renderer using GTK
for output might specify’ gt k" as its device. If a name is given, the library will look for aiglin
of type APLdevice with that name, and use the associated functionstialize and terminate the
device. See Section 6.2.

| oadi mage_t ar get The name of the preferred type of image format for the remdéi¢hen a user-
supplied image is given, the library will attempt to find adtion that will convert the image from
its original format to the renderer’s preferred one. A wefined renderer may need to provide, as
additional plug-ins, its own functions for handling the eersion.

6.2 Writing a device plug-in

A device plug-in provides hooks f@eraphvizto handle any device-specific operations needed before and
after rendering. The related engine of typedevi ce_engi ne_t has 2 entry points:

void (*initialize) (GVI_t*);
void (*finalize) (GVI_tx*);

which are called at the beginning and end of rendering edzHTjoe initialize routine might open a canvas
on window system, or set up a new page for printing; the fieal@itine might go into an event loop after
which it could close the output device.

6.3 Writing an image loading plug-in

A image loading plug-in has engine typei magel oad_engi net and provides a single entry point
which can be used to read in an image, convert the image frariosmat to another, and write the result.
Since the function actually does rendering, it is usualhsely tied to a specific renderer plug-in.

void (*l oadi mage) (GVJ_t =*job, usershape_t =*us, boxf b, bool filled);

1The ordering must be done byte-wise using tH&G=C locale for byte comparison.

GraphvizDrawing Library Manual, April 27, 2009 33

Flag

Description

GVRENDER_DOES_ARROWS
GVRENDER_DOES_LAYERS

GVRENDER_DCES_MULTI GRAPH.OUTPUT_FI LES | If true, the renderer’s output can contain multiple renoigsi

GVRENDER_DOES_TRUECOLOR
GVRENDER_Y_GOES_DOVWN
GVRENDER_X11_EVENTS

GVRENDER_DOES_TRANSFORM

GVRENDER_DOES_LABELS
GVRENDER.DCES_MAPS

GVRENDER.DCES_MAP_RECTANGLE

GVRENDER_DOES_MAP_CI RCLE
GVRENDER_DOES_VAP_POLYGON
GVRENDER.DCES_MAP_ELLI PSE
GVRENDER_DOES_VAP_BSPLI NE
GVRENDER_DOES_TOOLTI PS

GVRENDER_DOES_TARGETS

GVRENDER.DCES_Z

Built-in arrowheads on splines
Supports graph layers

Supports a truecolor color model

Output coordinate system has the origin in the upper lefieor

For GUI plug-ins, defers actual rendering until the GUI evierop
invokesj ob- >cal | backs- >refresh()

Can handle transformation (scaling, translation, rotgtfcom univer-
sal to device coordinates. If false, the library will do thernisformation
before passing any coordinates to the renderer

Wants an object’s label, if any, provided as text during ezird)
Supports regions to which URLs can be attached. If true, Uiks|
provided to the renderer, either as part of jtab- >0bj or via the
renderer'soegi n_anchor function

Rectangular regions can be mapped

Circular regions can be mapped

Polygons can be mapped

Ellipses can be mapped

B-splines can be mapped

If true, tooltips are provided to the renderer, either as pérthe
j ob->o0bj orviathe renderer'segi n_anchor function

If true, targets are provided to the renderer, either as phathe
j ob->o0bj orviathe renderer'segi n_anchor function

Uses a 3D output model

Table 16: Renderer properties

When called] oadi mage is given the current job, a pointer to the input image and the bounding box
b in device coordinates where the image should be written.bbwteanf i | | ed value indicates whether
the bounding box should first be filled.

Thet ype value for an image loading plug-ingvpl ugi n_i nst al | ed_t entry should specify the
input and output formats it handles. Thus, a plug-in coivgdPEG to GIF would be callédg peg2gi f".
Since an image loader may well want to read in an image in someatt, and then render the image using
the same format, it is quite reasonable for the input andutdtwmats to be identical, e.§.gi f 2gi f ".

Concerning the typaser shape_t , its most important fields are shown in Figure 7. These fiekdgh

the following meanings:

name The name of the image.

f An open input stream to the

char *name;

FILE *f;

imagetypet type;

unsigned int x, y;

unsigned int w, h;

unsigned int dpi;

void *data;

sizet datasize;

void (*datafree)(usershapeus);

Figure 7: Fields iruser shape_t

image’s data. Since the image trhiglprocessed multiple times, the

GraphvizDrawing Library Manual, April 27, 2009 34

application should use a function suchfae ek to make sure the file pointer points to the beginning
of the file.

t ype The format of the image. The formats supported@raphvizare FT_BMP, FT_G F, FT_PNG,
FT_JPEG FT_PDF, FT_PS andFT_EPS. The value=T_NULL indicates an unknown image type.

x andy The coordinates of the lower-left corner of image in imagésunThis is usually the origin but
some images such as those in PostScript format may be tiethstaay from the origin.

wand h The width and height of image in image units
dpi The number of image units per inch

dat a, dat asi ze, dat af r ee These fields can be used to cache the converted image data Huetliile
I/0 and conversion need only be done once. The data can ledst@dat a, with dat asi ze
giving the number of bytes used. In this case, the imagengactide should store a clean-up handler
in dat af r ee, which can be called to release any memory allocated.

If | oadi mage does caching, it can checkufs- >dat a is NULL. If so, it can read and cache the
image. If not, it should check that thes- >dat af r ee value points to its ownlat af r ee routing.

If not, then some other image loader has cached data therel dddi mage function must them
call the currenus- >dat af r ee function before caching its own version of the image.

The code template in Figure 8 indicates how caching shoulthbdled.

if (us->data) {
if (us->datafree !'= ny_datafree) {
us->datafree(us); [/ free inconpatible cache data */
us->data = NULL;
us->dat af r ee NULL;
us->dat asi ze = 0;

}

if (lus->data) {
/* read i mage data fromus->f and convert it;
* store the inage data into nenory pointed to by us->data;
* set us->datasize and us->datafree to the appropriate val ues.
*/
}

if (us->data) {
/[emt the inmage data in us->data */

}

Figure 8: Caching converted images

GraphvizDrawing Library Manual, April 27, 2009 35

7 Unconnected graphs

All of the basic layouts provided bgraphvizare based on a connected graph. Each is then extended to
handle the not uncommon case of having multiple componémtst of the time, the obvious approach is
used: draw each component separately and then assemblatfiegs into a single layout. The only place
this is not done is imeatowhen the mode ISKK" andpack="f al se" (cf. Section 3.2).

For thedot algorithm, its layered drawings make the merging simple ribdes on the highest rank
of each component are all put on the same rank. For the otheutk it is not obvious how to put the
components together.

The Graphviz software provides the librarpack to assist with unconnected graphs, especially by
supplying a technique for packing arbitrary graph drawitogether quickly, aesthetically and with efficient
use of space. The following code indicates how the libran/mintegrated with the basic layout algorithms
given an input graplg and aGVC_t valuegvc.

graph_t =+sg;

FI LE +fp;
graph_t+=* cc;

i nt i, ncc;

cc = cconps(g, &ncc, (char*)0);

for (i =0; i <ncc; i++) {
sg = cc[i];
nodel nduce (sg);
gvLayout (gvc, sg, "neato");

}
pack _graph (ncc, cc, g, 0);

gvRender (gvc, g, "ps", stdout);
for (i =0; i <ncc; i++) {
sg = cc[i];
gvFreeLayout (gvc, sQ@);
agdel ete(g, sg);
}

The call tocconps splits the graptyg into its connected componentsicc is set to the number of
components. The components are represented by subgraplesmbut graph, and are stored in the returned
array. The function gives names to the components in a waglttwalld not conflict with previously existing
subgraphs. If desired, the third argumenttoonps can be used to designate what the subgraphs should
be called. Also, for flexibility, the subgraph componentsndb contain the associated edges.

Certain layout algorithms, such agatq allow the input graph to fix the position of certain nodes,
indicated byND_pi nned(n) being non-zero. In this case, all nodes with a fixed positieedto be laid
out together, so they should all occur in the same “connéatedhponent. Thepack library provides
pcconps, an analogue taconps for this situation. It has almost the same interfacecasnps, but
takes ool ean+ third parameter. The function sets the boolean pointed tau®if the graph has nodes
with fixed positions. In this case, the component contaitiirege nodes is the first one in the returned array.

GraphvizDrawing Library Manual, April 27, 2009 36

Continuing with the example, we take one component at a tiimenodel nduce to create the corre-
sponding node-induced subgraph, and then lay out the cammparithgvLayout . Here, we us@eatofor
each layout, but it is possible to use a different layout mhrecomponent?

Next, we use thepack function pack_gr aph to reassemble the graph into a single drawing. To
position the componentpack uses the polyomino-based approach described by Freivaag=-©KO02].
The first three arguments to the function are clear. The fioamgument indicates whether or not there are
fixed components.

Thepack_gr aph function uses the graphfsacknode attribute to determine how the packing should
be done. At present, packing uses the single algorithm wresdi above, but allows three varying granular-
ities, represented by the valuesode” , " cl ust " and” gr aph”. In the first case, packing is done at the
node and edge level. This provides the tightest packinggusie least area, but also allows a node of one
component to lie between two nodes of another componentsddend valug, cl ust ", requires that the
packing treat top-level clusters with a set bounding Bxbb value like a large node. Nodes and edges
not entirely contained within a cluster are handled as inptte¥ious case. This prevents any components
which do not belong to the cluster from intruding within tHaster’s bounding box. The last case does the
packing at the graph granularity. Each component is treadazhe large node, whose size is determined by
its bounding box.

Note that the library automatically computes the bounding bf each of the components. Also, as
a side-effectpack_gr aph finishes by recomputing and setting the bounding box at&ib_bb of the
graph.

The final step is to free the component subgraphs.

Althoughdotandneatohave their specialized approaches to unconnected graghsyild be noted that
these are not without their deficiencies. The approach ugedtaligning the drawings of all components
along the top, works well until the number of components grtarge. When this happens, the aspect ratio
of the final drawing can become very batkatds handling of an unconnected graph can have two draw-
backs. First, there can be a great deal of wasted space. Tgeckesen to separate components is a simple
function of the number of nodes. With a certain edge strectatomponent drawings may use much less
area. This can produce a drawing similar to a classic atoarge Inucleus surrounded by a ring of electrons
with a great deal of empty space between them. Secondygammodel is essentially quadratic. If the
components are drawn separately, one can see a dramagasedn layout time, sometimes several orders
of magnitudes. For these reasons, it sometimes makes seapply thetwopi approach for unconnected
graphs to thedot and neatolayouts. In fact, as we've notedieat ol ayout typically uses thepack
library by default.

12pt present, thelot layout has a limitation that it only works on a root graph. $hio usedot for a component, one needs to
create a new copy of the subgraph, apgdy and then copy the position attributes back to the component.

GraphvizDrawing Library Manual, April 27, 2009 37

References

[Coh87]

[DGKN97]

[FDKO02]

[FR91]

[GKNO4]

[GKNV93]

[GNOO]

[KK89]

[KN94]

[KS80]

[KW]

[LBMO7]

[ST99]

[STOO]

[STT81]

J. Cohen. Drawing graphs to convey proximity: amentental arrangement meth cACM
Transactions on Computer-Human Interactidi11):197-229, 1987.

D. Dobkin, E. Gansner, E. Koutsofios, and S. Nortimplementing a general-purpose edge
router. In G. DiBattista, editolRProc. Symp. Graph Drawing GD'9%olume 1353 ol ecture
Notes in Computer Sciengeages 262—-271, 1997.

K. Freivalds, U. Dogrusoz, and P. Kikusts. Discoctegl graph layout and the polyomino
packing approach. In P. Mutzel et al., edit®roc. Symp. Graph Drawing GD’Qlvolume
2265 ofLecture Notes in Computer Scienpages 378-391, 2002.

Thomas M. J. Fruchterman and Edward M. Reingold. Gmawing by Force-directed Place-
ment. Software — Practice and Experienc1(11):1129-1164, November 1991.

E. Gansner, Y. Koren, and S. North. Graph drawing togss majorization. IfProc. Symp.
Graph Drawing GD’04 September 2004.

Emden R. Gansner, Eleftherios Koutsofios, Step@eMorth, and Kiem-Phong Vo. A Tech-
nique for Drawing Directed Graph$EEE Trans. Software Engineering9(3):214-230, May
1993.

E.R. Gansner and S.C. North. An open graph visuatizasystem and its applications to
software engineeringSoftware — Practice and Experienc&0:1203-1233, 2000.

T. Kamada and S. Kawai. An algorithm for drawing gesleundirected graphsinformation
Processing Letters31(1):7-15, April 1989.

Eleftherios Koutsofios and Steve North. Applicasoof Graph Visualization. IProceedings
of Graphics Interfacepages 235245, May 1994.

J. Kruskal and J. Seery. Designing network diagram$?roc. First General Conf. on Social
Graphics pages 22-50, 1980.

M. Kaufmann and R. Wiese. Maintaining the mental map forcular drawings. In
M. Goodrich, editor,Proc. Symp. Graph Drawing GD’Q2/0lume 2528 ofLecture Notes in
Computer Scienggages 12—-22.

W. Lee, N. Barghouti, and J. Mocenigo. Grappa: A drggackage in Java. In G. DiBattista, ed-
itor, Proc. Symp. Graph Drawing GD’9%olume 1353 of.ecture Notes in Computer Science
1997.

Janet Six and loannis Tollis. Circular drawings afdrinected graphs. Rroc. ALENEX 99
pages 57-73, 1999.

Janet Six and loannis Tollis. A framework for cirautitawings of networks. IfProc. Symp.
Graph Drawing GD’99 volume 1731 olecture Notes in Computer Sciengages 107-116.
Springer-Verlag, 2000.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for &isinderstanding of Hierarchical Sys-
tem Structures.IEEE Trans. Systems, Man and Cybernet8MC-11(2):109-125, February
1981.

GraphvizDrawing Library Manual, April 27, 2009 38

[Wil97] G. Wills. Nicheworks - interactive visualizationf @ery large graphs. In G. DiBattista, editor,
Symposium on Graph Drawing GD’9volume 1353 ofLecture Notes in Computer Science
pages 403-414, 1997.

[Win02]

A. Winter. Gxl - overview and current status. Rrocs. International Workshop on Graph-
Based Tools (GraBaTspctober 2002.

GraphvizDrawing Library Manual, April 27, 2009 39

A Compiling and linking

This appendix provides a brief description of how to buildiyprogram usingsraphvizas a library. It also
notes the various libraries involved. As compilation systevary greatly, we make no attempt to provide
low-level build instructions. We assume that the user isbgpof tailoring the build environment to use the
necessary include files and libraries.

All of the necessary include files and libraries are avadablthei ncl ude andl i b directories where
Graphvizis installed. At the simplest level, all an application neéaldo to use the layout algorithms is to
includegvc. h, which provides (indirectly) all of th&raphviztypes and functions, compile the code, and
link the program with the necessary libraries.

For linking, the application should use tlgaphvizlibraries

e gvC

e graph

pat hpl an

e cdt

If the system is configured to use plug-ins, these libraniegt that are necessary. At run time, the program
will load the dynamic libraries it needs.

If the program does not use plug-ins, then these libraries te be incorporated at link time. These
libraries may include

e gvpl ugi n.dot | ayout
e gvpl ugi n_neat ol ayout

e gvpl ugi ngd
e gvpl ugi n_pangocai r o3

plus any other plug-ins the program requires.

If Graphvizis built and installed with the GNU build tools, there are ke configure files created
in thel i b/ pkgconf i g directory which can be used with thekg- conf i g program to obtain the in-
clude file and library information for a given installatiodssuming a Unix-like environment, a sample
Makef i | e for building the programs listed in Appendices B, C ant Eould have the form:

CFLAGS=' pkg-config |ibgvc --cflags' -wall -g -2
LDFLAGS=* pkg-config |libgvc --1ibs’

all: sinple dot denp

sinple: sinple.o
dot: dot.o
deno: deno.o

cl ean:
rm-rf sinple dot denmp *.o0

3For completeness, we note that it may be necessary to ekpliok in the following additional libraries, dependinqidhe
options set whesraphvizwas built:expat ,f ont confi g, f r eet ype2, pangocai r o, cai r o, pango, gd, j peg, png, z,
I t dl , and other libraries required by Cairo and Pango. Typictiigugh, most builds handle these implicitly.

1They can also be found, along with thakef i | e, in thedot . deno directory of theGraphvizsource.

GraphvizDrawing Library Manual, April 27, 2009 40

B A sample program: si npl e. c

This following code illustrates an application which usasphvizto position a graph using ttaot layout
and then write the output using tpé ai n format. An application can replace the callgeRender with

its own function for rendering the graph, using the layodibimation encoded in the graph structure (cf.
Section 2.3).

GraphvizDrawing Library Manual, April 27, 2009 41

#i ncl ude <gvc. h>

int main(int argc, char =*xargv)

{
GVC t =*gvc;

graph_t =*g;
FI LE +fp;

gvc = gvContext();

if (argc > 1)

fp = fopen(argv[1l], "r");
el se

fp = stdin;
g = agread(fp);

gvLayout (gvc, g, "dot");

gvRender (gvc, g, "plain", stdout);
gvFreeLayout (gvc, Q);

agcl ose(Q);

return (gvFreeContext(gvc));

C A sample program: dot . c

This example shows how an application might read a streampof igraphs, lay out each, and then use the
Graphvizrenderers to write the drawings to an output file. Indeed, ithprecisely how thdot program is
written, ignoring some signal handling, its specific deatimn of thel nf o data (cf. Section 4.1), and a few
other minor details.

#i ncl ude <gvc. h>

int main(int argc, char =*+xargv)
{
graph_t =g, *prev = NULL;
GVC_ t =*gvc;

gvc = gvContext();
gvParseArgs(gvc, argc, argv);

while ((g = gvNextl nput Graph(gvc))) {
if (prev) {
gvFreeLayout (gvc, prev);
agcl ose(prev);

GraphvizDrawing Library Manual, April 27, 2009 42

}
gvLayout Jobs(gvc, g);

gvRender Jobs(gve, g);
prev = g;

}

return (gvFreeContext(gvc));

D A sample program: deno. c

This example provides a modification of the previous examplgain it relies on theGraphvizrenderers,
but now it creates the graph dynamically rather than reatliagyraph from a file.

#i ncl ude <gvc. h>

int main(int argc, char =*+xargv)
{

Agraph_t =*g;

Agnode_t *n, *m

Agedge t =*eg;

Agsymt =a;

GVC t =*gvc;

[+ set up a graphviz context =*/
gvc = gvContext();

/= parse command line args - mnimally argv[0] sets |layout engine =/
gvParseArgs(gvc, argc, argv);

/* Create a sinple digraph =/

g = agopen("g", AGDI GRAPH);

n = agnode(g, "n");

m = agnode(g, "m');

e = agedge(g, n, m;

/= Set an attribute - in this case one that affects the visible rendering */
agsafeset(n, "color", "red", "");

/= Conpute a | ayout using |ayout engine fromcomand |ine args =/
gvLayout Jobs(gvc, Q);

/+ Wite the graph according to -T and -0 options */
gvRender Jobs(gvec, 9);

/* Free layout data =/
gvFreelLayout (gvc, g);

GraphvizDrawing Library Manual, April 27, 2009 43

[+ Free graph structures =*/
agcl ose(Q);

[+ close output file, free context, and return nunber of errors */
return (gvFreeContext(gvc));

E Some basic types and their string representations

A poi nt type is the structure

struct {
int x, vy;

}

The fields can either give an absolute position or represeptior displacement. foi nt f type is the
same, with nt replaced withdoubl e. A box type is the structure

struct {
point LL, UR
}

representing a rectangle. Thé gives the coordinates of the lower-left corner, while Uieis the upper-
right corner. Aboxf type is the same, withoi nt replaced withpoi nt f .

The following gives the accepted string representatiorrsesponding to values of the given types.
Whitespace is ignored when converting these values framgstto their internal representations.

poi nt "x,y" where(x, y) are the integer coordinates of a position in points (72 gomt inch).
poi ntf "x,y" where(x,y) are the floating-point coordinates of a position in inches.

rectangle "Il x, 11y, urx,ury” where(llx,11Yy) is the lower left corner of the rectangle and
(urx, ury) is the upper right corner, all in integer points.

spl i neType A semicolon-separated list efpl i ne values.

spl i ne This type has an optional end point, an optional start p@ntl a space-separated list8f =
3n + 1 points for some positive integer. An end point consists of poi nt preceded by e, "; a
start point consists of poi nt preceded by s, " . The optional components are separated by spaces.

The terminating list of point®+, ps, ..., pn gives the control points of a B-spline. If a start point
is given, this indicates the presence of an arrowhead. Enepmtint touches one node of the corre-
sponding edge and the direction of the arrowhead is givehdyéctor fronp, to the start point. If
the start point is absent, the poimt will touch the node. The analogous interpretation holdsafor
end point angy .

