
rlog Reference Manual
1.3

Generated by Doxygen 1.4.4

Sat Oct 14 22:04:06 2006

Contents

1 RLog - a C++ logging library 1

1.1 Introduction . 1

1.2 Using RLog . 2

1.3 Requirements . 2

1.4 Downloads . 3

2 rlog Module Index 5

2.1 rlog Modules . 5

3 rlog Directory Hierarchy 7

3.1 rlog Directories . 7

4 rlog Class Index 9

4.1 rlog Class List . 9

5 rlog Page Index 11

5.1 rlog Related Pages . 11

6 rlog Module Documentation 13

6.1 RLogMacros . 13

7 rlog Directory Documentation 21

7.1 _darcs/ Directory Reference . 21

7.2 _darcs/current/ Directory Reference 22

7.3 _darcs/current/rlog/ Directory Reference 23

ii CONTENTS

7.4 rlog-1.3.7/rlog/ Directory Reference 24

7.5 rlog/ Directory Reference . 25

7.6 rlog-1.3.7/ Directory Reference . 26

8 rlog Class Documentation 27

9 rlog Page Documentation 29

9.1 RLog Channels . 29

9.2 RLog Components . 33

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 1

RLog - a C++ logging library

Copyright ©2002-2004 Valient Gough < vgough @ pobox . com >

Distributed under the LGPL license, see COPYING for details.

1.1 Introduction

RLog provides a flexible message logging facility for C++ programs and libraries. It is
meant to be fast enough to leave in production code.

RLog provides macros which are similar to Qt’s debug macros, which are similar to
simple printf() statements:

void func(int foo)
{

rDebug("foo = %i", foo);
int ans = 6 * 9;
if(ans != 42)

rWarning("ans = %i, expecting 42", ans);
rError("I’m sorry %s, I can’t do that (error code %i)", name, errno);

}

The difference to Qt’s macros is that the log messages are considered publishers and
there can be any number of subscribers to log messages. Subscribers may choose
which messages they want to receive in a number of different ways:

• subscribe to messages to a particular channel. Channels are hierarchical can be
easily created. See RLog Channels.

• subscribe to anything from a particular component. See RLog Components.

• subscribe to messages from a particular file name within a component.

2 RLog - a C++ logging library

If there are no subscribers to a particular logging statement, that statement can be said to
be dormant. RLog is optimized to minimize overhead of dormant logging statements,
with the goal of allowing logging to be left in release versions of software. This way
if problems show up in production code, it is possible to activate logging statements in
real time to aid debugging.

As an indication of just how cheap a dormant logging statement is, on a Pentium-4
class CPU with g++ 3.3.1, a dormant log in a tight loop adds on the order of 2-6 (two
to six) clock cycles of overhead (1). By comparison a simple logging function such
as Qt’s qDebug() adds about 1000 (a thousand) clock cycles of overhead - even when
messages are being thrown away.

In addition, logging statements in RLog can be individually activated at run-time with-
out affecting any other statements, allowing targeted log reporting.

(1) The first time a logging statement is encountered, it must be registered in order to
determine if there are any subscribers. So there is additional overhead the first time a
statement is encountered.

1.2 Using RLog

In order to begin using RLog in your code, you should do the following:

• define RLOG_COMPONENT in your build environment. Eg: librlog is built
with -DRLOG_COMPONENT="rlog". You should use a unique name for your
program or library (do not use "rlog"). If your program is made up of separate
components, then you can define RLOG_COMPONENT as a different name for
each component.

• (optional) add a call to RLogInit() in your main program startup code. This is
not a requirement, however not including it may reduce functionality of external
rlog modules.

• link with librlog

• add subscribers (rlog::StdioNode , rlog::SyslogNode , or your own) to catch any
messages you are interested in.

1.3 Requirements

RLog has been tested on the following systems (all releases may not have been tested
on all systems):

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

1.4 Downloads 3

Platform Operating
System

Compiler Notes

ix86 SuSE 9.2 GNU G++ 3.3.4 binary RPM
available

SuSE 9.0 Intel ICC 8.0 last test was prior
to RLog 1.3.4

RedHat 7.3 GNU G++ 2.96 binary RPM
available

OpenBSD 3.4 GNU G++ 2.95.3 Tested with 1.3.5

FreeBSD
4.10-beta

GNU G++ 2.95.4 Support added in
1.3.6 release

sparc Solaris 5.9 GNU G++ 3.3.2

PowerPC Darwin 5.5 gcc-932.1 Support added in
1.3.6 release

To build development versions, you will also need the GNU autoconf tools (with au-
tomake and libtool). Documentation is built using Doxygen.

1.4 Downloads

RLog is available in source code and RPM packaged binaries for some systems.

RLog Version 1.3.7 - Oct 5, 2005 release.

• Tarball: rlog-1.3.7.tgz + tarball GPG signature

• Source RPM: rlog-1.3.7-1.src.rpm

Binary packages:

• SuSE 9.2 i586 RPM: rlog-1.3.7-1suse92.i586.rpm

• RedHat 7.3 i386 RPM: rlog-1.3.7-1rh73.i386.rpm

To check the signature, you can download my public key from a public key server, or
from the link at the top of my homepage.

If you wish to be notified automatically of new releases, you can subscribe to new
release notifications on the Freshmeat page.

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

http://arg0.net/users/vgough/download/rlog-1.3.7.tgz
http://arg0.net/users/vgough/download/rlog-1.3.7.tgz.asc
http://arg0.net/users/vgough/download/rlog-1.3.7-1.src.rpm
http://arg0.net/users/vgough/download/rlog-1.3.7-1suse92.i586.rpm
http://arg0.net/users/vgough/download/rlog-1.3.7-1rh73.i386.rpm
http://arg0.net/users/vgough
http://freshmeat.net/projects/rlog/

4 RLog - a C++ logging library

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 2

rlog Module Index

2.1 rlog Modules

Here is a list of all modules:

RLogMacros . 13

6 rlog Module Index

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 3

rlog Directory Hierarchy

3.1 rlog Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

_darcs . 21
current . 22

rlog . 23
rlog . 25
rlog-1.3.7 . 26

rlog . 24

8 rlog Directory Hierarchy

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 4

rlog Class Index

4.1 rlog Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

rlog::Error (Error Used as exception thrown from rAssert() on failure) ??
rlog::ErrorData (Internal RLog structure - holds internal data for rlog::Error) ??
rlog::FileNode (Provides filename based logging nodes) ??
rlog::Lock . ??
rlog::Mutex (Class encapsulating a critical section under Win32 or a mutex

under Unix) . ??
rlog::PublishLoc (Internal RLog structure - static struct for each rLog() state-

ment) . ??
rlog::RLogChannel (Implements a hierarchical logging channel) ??
rlog::RLogData (Data published through RLogNode) ??
rlog::RLogModule (Allows registration of external modules to rlog) ??
rlog::RLogNode (Core of publication system, forms activation network) . . . ??
rlog::RLogPublisher (RLog publisher used by rLog macros) ??
rlog::StdioNode (Logs subscribed messages to a file descriptor) ??
rlog::SyslogNode (Logs subscribed messages using syslog) ??

10 rlog Class Index

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 5

rlog Page Index

5.1 rlog Related Pages

Here is a list of all related documentation pages:

RLog Channels . 29
RLog Components . 33

12 rlog Page Index

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 6

rlog Module Documentation

6.1 RLogMacros

Defines

• #define rDebug() _rMessage(LOGID, rlog::_RLDebugChannel, ##__VA_-
ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

• #define rInfo() _rMessage(LOGID, rlog::_RLInfoChannel, ##__VA_ARGS__
)

Log a message to the "debug" channel. Takes printf style arguments.

• #define rWarning() _rMessage(LOGID, rlog::_RLWarningChannel, ##__VA_-
ARGS__)

Log a message to the "warning" channel. Takes printf style arguments.

• #define rError() _rMessage(LOGID, rlog::_RLErrorChannel, ##__VA_ARGS_-
_)

Log a message to the "error" channel. Takes printf style arguments.

• #define rLog(channel,) _rMessage(LOGID, channel, ##__VA_ARGS__)

Log a message to a user defined channel. Takes a channel and printf style arguments.

• #define rDebug() _rMessage(LOGID, rlog::_RLDebugChannel, ##__VA_-
ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

14 rlog Module Documentation

• #define rInfo() _rMessage(LOGID, rlog::_RLInfoChannel, ##__VA_ARGS__
)

Log a message to the "debug" channel. Takes printf style arguments.

• #define rWarning() _rMessage(LOGID, rlog::_RLWarningChannel, ##__VA_-
ARGS__)

Log a message to the "warning" channel. Takes printf style arguments.

• #define rError() _rMessage(LOGID, rlog::_RLErrorChannel, ##__VA_ARGS_-
_)

Log a message to the "error" channel. Takes printf style arguments.

• #define rLog(channel,) _rMessage(LOGID, channel, ##__VA_ARGS__)
Log a message to a user defined channel. Takes a channel and printf style arguments.

• #define rDebug() _rMessage(LOGID, rlog::_RLDebugChannel, ##__VA_-
ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

• #define rInfo() _rMessage(LOGID, rlog::_RLInfoChannel, ##__VA_ARGS__
)

Log a message to the "debug" channel. Takes printf style arguments.

• #define rWarning() _rMessage(LOGID, rlog::_RLWarningChannel, ##__VA_-
ARGS__)

Log a message to the "warning" channel. Takes printf style arguments.

• #define rError() _rMessage(LOGID, rlog::_RLErrorChannel, ##__VA_ARGS_-
_)

Log a message to the "error" channel. Takes printf style arguments.

• #define rLog(channel,) _rMessage(LOGID, channel, ##__VA_ARGS__)
Log a message to a user defined channel. Takes a channel and printf style arguments.

6.1.1 Detailed Description

These macros are the primary interface for logging messages:

• rDebug(format, ...)

• rInfo(format, ...)

• rWarning(format, ...)

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

6.1 RLogMacros 15

• rError(format, ...)

• rLog(channel, format, ...)

• rAssert(condition)

These macros are the primary interface for logging messages:

• rDebug(format, ...)

• rInfo(format, ...)

• rWarning(format, ...)

• rError(format, ...)

• rLog(channel, format, ...)

• rAssert(condition)

These macros are the primary interface for logging messages:

• rDebug(format, ...)

• rInfo(format, ...)

• rWarning(format, ...)

• rError(format, ...)

• rLog(channel, format, ...)

• rAssert(condition)

6.1.2 Define Documentation

6.1.2.1 #define rDebug() _rMessage(LOGID, rlog::_RLDebugChannel,
##__VA_ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

Format is ala printf, eg:

rDebug("I’m sorry %s, I can’t do %s", name, request);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

16 rlog Module Documentation

6.1.2.2 #define rDebug() _rMessage(LOGID, rlog::_RLDebugChannel,
##__VA_ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

Format is ala printf, eg:

rDebug("I’m sorry %s, I can’t do %s", name, request);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.3 #define rDebug() _rMessage(LOGID, rlog::_RLDebugChannel,
##__VA_ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

Format is ala printf, eg:

rDebug("I’m sorry %s, I can’t do %s", name, request);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.4 #define rError() _rMessage(LOGID, rlog::_RLErrorChannel,
##__VA_ARGS__)

Log a message to the "error" channel. Takes printf style arguments.

An error indicates that something has definately gone wrong.

Format is ala printf, eg:

rError("bad input %s, aborting request", input);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.5 #define rError() _rMessage(LOGID, rlog::_RLErrorChannel,
##__VA_ARGS__)

Log a message to the "error" channel. Takes printf style arguments.

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

6.1 RLogMacros 17

An error indicates that something has definately gone wrong.

Format is ala printf, eg:

rError("bad input %s, aborting request", input);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.6 #define rError() _rMessage(LOGID, rlog::_RLErrorChannel,
##__VA_ARGS__)

Log a message to the "error" channel. Takes printf style arguments.

An error indicates that something has definately gone wrong.

Format is ala printf, eg:

rError("bad input %s, aborting request", input);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.7 #define rInfo() _rMessage(LOGID, rlog::_RLInfoChannel,
##__VA_ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

Format is ala printf, eg:

rInfo("I’m sorry %s, I can’t do %s", name, request);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.8 #define rInfo() _rMessage(LOGID, rlog::_RLInfoChannel,
##__VA_ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

Format is ala printf, eg:

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

18 rlog Module Documentation

rInfo("I’m sorry %s, I can’t do %s", name, request);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.9 #define rInfo() _rMessage(LOGID, rlog::_RLInfoChannel,
##__VA_ARGS__)

Log a message to the "debug" channel. Takes printf style arguments.

Format is ala printf, eg:

rInfo("I’m sorry %s, I can’t do %s", name, request);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.10 #define rLog(channel) _rMessage(LOGID, channel, ##__VA_ARGS__
)

Log a message to a user defined channel. Takes a channel and printf style arguments.

An error indicates that something has definately gone wrong.

Format is ala printf, eg:

static RLogChannel * MyChannel = RLOG_CHANNEL("debug/mine");
rLog(MyChannel, "happy happy, joy joy");

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.11 #define rLog(channel) _rMessage(LOGID, channel, ##__VA_ARGS__
)

Log a message to a user defined channel. Takes a channel and printf style arguments.

An error indicates that something has definately gone wrong.

Format is ala printf, eg:

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

6.1 RLogMacros 19

static RLogChannel * MyChannel = RLOG_CHANNEL("debug/mine");
rLog(MyChannel, "happy happy, joy joy");

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.12 #define rLog(channel) _rMessage(LOGID, channel, ##__VA_ARGS__
)

Log a message to a user defined channel. Takes a channel and printf style arguments.

An error indicates that something has definately gone wrong.

Format is ala printf, eg:

static RLogChannel * MyChannel = RLOG_CHANNEL("debug/mine");
rLog(MyChannel, "happy happy, joy joy");

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.13 #define rWarning() _rMessage(LOGID, rlog::_RLWarningChannel,
##__VA_ARGS__)

Log a message to the "warning" channel. Takes printf style arguments.

Output a warning message - meant to indicate that something doesn’t seem right.

Format is ala printf, eg:

rWarning("passed %i, expected %i, continuing", foo, bar);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.14 #define rWarning() _rMessage(LOGID, rlog::_RLWarningChannel,
##__VA_ARGS__)

Log a message to the "warning" channel. Takes printf style arguments.

Output a warning message - meant to indicate that something doesn’t seem right.

Format is ala printf, eg:

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

20 rlog Module Documentation

rWarning("passed %i, expected %i, continuing", foo, bar);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

6.1.2.15 #define rWarning() _rMessage(LOGID, rlog::_RLWarningChannel,
##__VA_ARGS__)

Log a message to the "warning" channel. Takes printf style arguments.

Output a warning message - meant to indicate that something doesn’t seem right.

Format is ala printf, eg:

rWarning("passed %i, expected %i, continuing", foo, bar);

When using a recent GNU compiler, it should automatically detect format string / ar-
gument mismatch just like it would with printf.

Note that unless there are subscribers to this message, it will do nothing.

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 7

rlog Directory Documentation

7.1 _darcs/ Directory Reference

Directories

• directory current

22 rlog Directory Documentation

7.2 _darcs/current/ Directory Reference

Directories

• directory rlog

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

7.3 _darcs/current/rlog/ Directory Reference 23

7.3 _darcs/current/rlog/ Directory Reference

Files

• file _darcs/current/rlog/Error.cpp
• file _darcs/current/rlog/Error.h
• file _darcs/current/rlog/Lock.h
• file _darcs/current/rlog/Mutex.h
• file _darcs/current/rlog/rlog-c99.h
• file _darcs/current/rlog/rlog-novariadic.h
• file _darcs/current/rlog/rlog-prec99.h
• file _darcs/current/rlog/rlog.cpp
• file _darcs/current/rlog/rlog.h
• file _darcs/current/rlog/RLogChannel.cpp
• file _darcs/current/rlog/RLogChannel.h
• file _darcs/current/rlog/rloginit.cpp
• file _darcs/current/rlog/rloginit.h
• file _darcs/current/rlog/rloglocation.cpp
• file _darcs/current/rlog/rloglocation.h
• file _darcs/current/rlog/RLogNode.cpp
• file _darcs/current/rlog/RLogNode.h
• file _darcs/current/rlog/RLogPublisher.cpp
• file _darcs/current/rlog/RLogPublisher.h
• file _darcs/current/rlog/RLogTime.h
• file _darcs/current/rlog/StdioNode.cpp
• file _darcs/current/rlog/StdioNode.h
• file _darcs/current/rlog/SyslogNode.cpp
• file _darcs/current/rlog/SyslogNode.h
• file _darcs/current/rlog/test.cpp
• file _darcs/current/rlog/testlog.cpp

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

24 rlog Directory Documentation

7.4 rlog-1.3.7/rlog/ Directory Reference

Files

• file 1.3.7/rlog/common.h
• file rlog-1.3.7/rlog/Error.cpp
• file rlog-1.3.7/rlog/Error.h
• file rlog-1.3.7/rlog/Lock.h
• file rlog-1.3.7/rlog/Mutex.h
• file rlog-1.3.7/rlog/rlog-c99.h
• file rlog-1.3.7/rlog/rlog-novariadic.h
• file rlog-1.3.7/rlog/rlog-prec99.h
• file rlog-1.3.7/rlog/rlog.cpp
• file rlog-1.3.7/rlog/rlog.h
• file rlog-1.3.7/rlog/RLogChannel.cpp
• file rlog-1.3.7/rlog/RLogChannel.h
• file rlog-1.3.7/rlog/rloginit.cpp
• file rlog-1.3.7/rlog/rloginit.h
• file rlog-1.3.7/rlog/rloglocation.cpp
• file rlog-1.3.7/rlog/rloglocation.h
• file rlog-1.3.7/rlog/RLogNode.cpp
• file rlog-1.3.7/rlog/RLogNode.h
• file rlog-1.3.7/rlog/RLogPublisher.cpp
• file rlog-1.3.7/rlog/RLogPublisher.h
• file rlog-1.3.7/rlog/RLogTime.h
• file rlog-1.3.7/rlog/StdioNode.cpp
• file rlog-1.3.7/rlog/StdioNode.h
• file rlog-1.3.7/rlog/SyslogNode.cpp
• file rlog-1.3.7/rlog/SyslogNode.h
• file rlog-1.3.7/rlog/test.cpp
• file rlog-1.3.7/rlog/testlog.cpp

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

7.5 rlog/ Directory Reference 25

7.5 rlog/ Directory Reference

Files

• file common.h
• file rlog/Error.cpp
• file rlog/Error.h
• file rlog/Lock.h
• file rlog/Mutex.h
• file rlog/rlog-c99.h
• file rlog/rlog-novariadic.h
• file rlog/rlog-prec99.h
• file rlog/rlog.cpp
• file rlog/rlog.h
• file rlog/RLogChannel.cpp
• file rlog/RLogChannel.h
• file rlog/rloginit.cpp
• file rlog/rloginit.h
• file rlog/rloglocation.cpp
• file rlog/rloglocation.h
• file rlog/RLogNode.cpp
• file rlog/RLogNode.h
• file rlog/RLogPublisher.cpp
• file rlog/RLogPublisher.h
• file rlog/RLogTime.h
• file rlog/StdioNode.cpp
• file rlog/StdioNode.h
• file rlog/SyslogNode.cpp
• file rlog/SyslogNode.h

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

26 rlog Directory Documentation

7.6 rlog-1.3.7/ Directory Reference

Directories

• directory rlog

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 8

rlog Class Documentation

28 rlog Class Documentation

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

Chapter 9

rlog Page Documentation

9.1 RLog Channels

An RLog Channel is a naming method for logging messages.

All logs are associated with a single channel, however there a variety of ways of sub-
scribing to a log message.

9.1.1 Channel Hierarchy

Channels are hierarchical. For example, if a log message is published on the "debug"
channel:

rDebug("hi");
// same as
static RLogChannel *myChannel = DEF_CHANNEL("debug", Log_Debug);
rLog(myChannel, "hi");

In the example above, all subscribers to the "debug" channel receive the messages, but
not subscribers to "debug/foo" or other sub-channels.

If a log is published under "debug/foo/bar":

static RLogChannel *myChannel = DEF_CHANNEL("debug/foo/bar", Log_Debug);
rLog(myChannel, "hi");

In that example, all subscribers to "debug/foo/bar", "debug/foo", and "debug" will re-
ceive the message.

All channels are considered to be derived from a root channel. It doesn’t have a true
name and is referenced as the empty string "". So, to capture all messages:

30 rlog Page Documentation

// capture all messages and log them to stderr
StdioNode stdLog(STDERR_FILENO);
stdLog.subscribeTo(GetGlobalChannel("")); // empty string is root channel

9.1.2 Channel Components

Or in mathematical terms, the cross product of channels and components.

Channels are componentized. By default, all log messages using one of the rLog type
macros is actually published on the component-specific version of the channel (the
component being the value of RLOG_COMPONENT at compile time). So, instead of
just saying a message was published on "debug" channel, we need to also say which
component it was part of, which we could represent as a pair (< COMPONENT,
CHANNEL >) – eg <"rlog", "debug">.

This means that two separate components, both using rDebug() (for example) could be
subscribed to separately, or together.

There is a way to subscribe to channels in the following ways:

• <COMPONENT, CHANNEL> : subscribe to a particular channel from a com-
ponent

• <COMPONENT, ∗> : subscribe to all channels from a component

• <∗, CHANNEL> : subscribe to a channel from all components

• <∗, ∗> : subscribe to all channels from all components

{
// this is published on the channel "debug", and the component
// [RLOG_COMPONENT]
rDebug("hi");

StdioNode stdLog(STDERR_FILENO);

// subscribe to a particular channel, from the current component
// ([RLOG_COMPONENT])
stdLog.subscribeTo(RLOG_CHANNEL("debug/foo"));

// subscribe to all channels from the current component ([RLOG_COMPONENT])
// (the root channel is the empty string "")
stdLog.subscribeTo(RLOG_CHANNEL(""));

// subscribe to a particular channel from all components
stdLog.subscribeTo(GetGlobalChannel("debug/foo"));

// subscribe to all channels from all components
stdLog.subscribeTo(GetGlobalChannel(""));

}

As you can see from the pattern above, using the RLOG_CHANNEL() macro limits
the selection to the current component. If you want to specify a component other then

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

9.1 RLog Channels 31

the current component, use GetComponentChannel() which takes the component name
as the first argument.

An RLog Channel is a naming method for logging messages.

All logs are associated with a single channel, however there a variety of ways of sub-
scribing to a log message.

9.1.3 Channel Hierarchy

Channels are hierarchical. For example, if a log message is published on the "debug"
channel:

rDebug("hi");
// same as
static RLogChannel *myChannel = DEF_CHANNEL("debug", Log_Debug);
rLog(myChannel, "hi");

In the example above, all subscribers to the "debug" channel receive the messages, but
not subscribers to "debug/foo" or other sub-channels.

If a log is published under "debug/foo/bar":

static RLogChannel *myChannel = DEF_CHANNEL("debug/foo/bar", Log_Debug);
rLog(myChannel, "hi");

In that example, all subscribers to "debug/foo/bar", "debug/foo", and "debug" will re-
ceive the message.

All channels are considered to be derived from a root channel. It doesn’t have a true
name and is referenced as the empty string "". So, to capture all messages:

// capture all messages and log them to stderr
StdioNode stdLog(STDERR_FILENO);
stdLog.subscribeTo(GetGlobalChannel("")); // empty string is root channel

9.1.4 Channel Components

Or in mathematical terms, the cross product of channels and components.

Channels are componentized. By default, all log messages using one of the rLog type
macros is actually published on the component-specific version of the channel (the
component being the value of RLOG_COMPONENT at compile time). So, instead of
just saying a message was published on "debug" channel, we need to also say which
component it was part of, which we could represent as a pair (< COMPONENT,
CHANNEL >) – eg <"rlog", "debug">.

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

32 rlog Page Documentation

This means that two separate components, both using rDebug() (for example) could be
subscribed to separately, or together.

There is a way to subscribe to channels in the following ways:

• <COMPONENT, CHANNEL> : subscribe to a particular channel from a com-
ponent

• <COMPONENT, ∗> : subscribe to all channels from a component

• <∗, CHANNEL> : subscribe to a channel from all components

• <∗, ∗> : subscribe to all channels from all components

{
// this is published on the channel "debug", and the component
// [RLOG_COMPONENT]
rDebug("hi");

StdioNode stdLog(STDERR_FILENO);

// subscribe to a particular channel, from the current component
// ([RLOG_COMPONENT])
stdLog.subscribeTo(RLOG_CHANNEL("debug/foo"));

// subscribe to all channels from the current component ([RLOG_COMPONENT])
// (the root channel is the empty string "")
stdLog.subscribeTo(RLOG_CHANNEL(""));

// subscribe to a particular channel from all components
stdLog.subscribeTo(GetGlobalChannel("debug/foo"));

// subscribe to all channels from all components
stdLog.subscribeTo(GetGlobalChannel(""));

}

As you can see from the pattern above, using the RLOG_CHANNEL() macro limits
the selection to the current component. If you want to specify a component other then
the current component, use GetComponentChannel() which takes the component name
as the first argument.

Generated on Sat Oct 14 22:04:05 2006 for rlog by Doxygen

9.2 RLog Components 33

9.2 RLog Components

An RLog Component is typically a group of files with some shared purpose.

When programs are built with RLog, the value of RLOG_COMPONENT is used as
the component name. If RLOG_COMPONENT is not set at compile time, you may
receive a compiler warning, and the component will be set to "[unknown]".

For example when rlog is built, it specifies -DRLOG_COMPONENT="rlog".

For more detail on how to use components in subscriptions, see RLog Channels.

An RLog Component is typically a group of files with some shared purpose.

When programs are built with RLog, the value of RLOG_COMPONENT is used as
the component name. If RLOG_COMPONENT is not set at compile time, you may
receive a compiler warning, and the component will be set to "[unknown]".

For example when rlog is built, it specifies -DRLOG_COMPONENT="rlog".

For more detail on how to use components in subscriptions, see RLog Channels.

Generated on Sat Oct 14 22:04:06 2006 for rlog by Doxygen

Index

_darcs/ Directory Reference, 21
_darcs/current/ Directory Reference, 22
_darcs/current/rlog/ Directory Reference,

23

rDebug
RLogMacros, 15, 16

rError
RLogMacros, 16, 17

rInfo
RLogMacros, 17, 18

rLog
RLogMacros, 18, 19

rlog-1.3.7/ Directory Reference, 26
rlog-1.3.7/rlog/ Directory Reference, 24
rlog/ Directory Reference, 25
RLogMacros, 13
RLogMacros

rDebug, 15, 16
rError, 16, 17
rInfo, 17, 18
rLog, 18, 19
rWarning, 19, 20

rWarning
RLogMacros, 19, 20

	RLog - a C++ logging library
	Introduction
	Using RLog
	Requirements
	Downloads

	rlog Module Index
	rlog Modules

	rlog Directory Hierarchy
	rlog Directories

	rlog Class Index
	rlog Class List

	rlog Page Index
	rlog Related Pages

	rlog Module Documentation
	RLogMacros

	rlog Directory Documentation
	_darcs/ Directory Reference
	_darcs/current/ Directory Reference
	_darcs/current/rlog/ Directory Reference
	rlog-1.3.7/rlog/ Directory Reference
	rlog/ Directory Reference
	rlog-1.3.7/ Directory Reference

	rlog Class Documentation
	rlog Page Documentation
	RLog Channels
	RLog Components

