
SnortTMUsers Manual
2.8.4

The Snort Project

March 5, 2009

Copyright c©1998-2003 Martin Roesch

Copyright c©2001-2003 Chris Green

Copyright c©2003-2008 Sourcefire, Inc.

1

Contents

1 Snort Overview 8

1.1 Getting Started 8

1.2 Sniffer Mode 8

1.3 Packet Logger Mode 9

1.4 Network Intrusion Detection System Mode 10

1.4.1 NIDS Mode Output Options 10

1.4.2 Understanding Standard Alert Output 11

1.4.3 High Performance Configuration 11

1.4.4 Changing Alert Order 12

1.5 Inline Mode 12

1.5.1 Snort Inline Rule Application Order 13

1.5.2 Replacing Packets with Snort Inline 13

1.5.3 Installing Snort Inline 13

1.5.4 Running Snort Inline 14

1.5.5 Using the Honeynet Snort Inline Toolkit 14

1.5.6 Troubleshooting Snort Inline 14

1.6 Miscellaneous 15

1.6.1 Running in Daemon Mode 15

1.6.2 Obfuscating IP Address Printouts 15

1.6.3 Specifying Multiple-Instance Identifiers 15

1.7 Reading Pcaps 15

1.7.1 Command line arguments 15

1.7.2 Examples 16

1.8 Tunneling Protocol Support 18

1.8.1 Multiple Encapsulations 18

1.8.2 Logging 18

1.9 More Information 19

2 Configuring Snort 20

2.0.1 Includes 20

2.0.2 Variables 20

2

2.0.3 Config 23

2.1 Preprocessors 31

2.1.1 Frag3 31

2.1.2 Stream5 34

2.1.3 sfPortscan 39

2.1.4 RPC Decode 44

2.1.5 Performance Monitor 44

2.1.6 HTTP Inspect 47

2.1.7 SMTP Preprocessor 55

2.1.8 FTP/Telnet Preprocessor 57

2.1.9 SSH 63

2.1.10 DCE/RPC 64

2.1.11 DNS 66

2.1.12 SSL/TLS 67

2.1.13 ARP Spoof Preprocessor 68

2.1.14 DCE/RPC 2 Preprocessor 69

2.2 Decoder and Preprocessor Rules 82

2.2.1 Configuring 82

2.2.2 Reverting to original behavior 83

2.2.3 Suppression and Thresholding 83

2.3 Event Thresholding 83

2.4 Performance Profiling 83

2.4.1 Rule Profiling 83

2.4.2 Preprocessor Profiling 85

2.4.3 Packet Performance Monitoring (PPM) 86

2.5 Output Modules 90

2.5.1 alertsyslog . 90

2.5.2 alertfast . 91

2.5.3 alertfull . 92

2.5.4 alertunixsock .92

2.5.5 logtcpdump . 92

2.5.6 database 93

2.5.7 csv 94

2.5.8 unified 95

2.5.9 unified 2 96

2.5.10 alertprelude . 96

2.5.11 log null 97

2.5.12 alertarubaaction . 97

2.6 Host Attribute Table 98

3

2.6.1 Configuration Format 98

2.6.2 Attribute Table File Format 98

2.7 Dynamic Modules 100

2.7.1 Format 100

2.7.2 Directives 100

3 Writing Snort Rules: How to Write Snort Rules and Keep Your Sanity 102

3.1 The Basics 102

3.2 Rules Headers 102

3.2.1 Rule Actions 102

3.2.2 Protocols 103

3.2.3 IP Addresses 103

3.2.4 Port Numbers 104

3.2.5 The Direction Operator 105

3.2.6 Activate/Dynamic Rules 105

3.3 Rule Options 106

3.4 General Rule Options 106

3.4.1 msg 106

3.4.2 reference 106

3.4.3 gid 107

3.4.4 sid 107

3.4.5 rev 108

3.4.6 classtype 108

3.4.7 priority 109

3.4.8 metadata 110

3.4.9 General Rule Quick Reference 110

3.5 Payload Detection Rule Options 111

3.5.1 content 111

3.5.2 nocase 112

3.5.3 rawbytes 113

3.5.4 depth 113

3.5.5 offset 113

3.5.6 distance 114

3.5.7 within 114

3.5.8 httpclient body . 114

3.5.9 httpcookie . 115

3.5.10 httpheader . 115

3.5.11 httpmethod . 116

3.5.12 httpuri . 116

4

3.5.13 fastpattern .117

3.5.14 uricontent 117

3.5.15 urilen 118

3.5.16 isdataat 118

3.5.17 pcre 119

3.5.18 bytetest . 120

3.5.19 bytejump . 121

3.5.20 ftpbounce 123

3.5.21 asn1 123

3.5.22 cvs 124

3.5.23 dceiface . 125

3.5.24 dceopnum . 125

3.5.25 dcestub data . 125

3.5.26 Payload Detection Quick Reference 125

3.6 Non-Payload Detection Rule Options 126

3.6.1 fragoffset 126

3.6.2 ttl 126

3.6.3 tos 126

3.6.4 id 127

3.6.5 ipopts 127

3.6.6 fragbits 128

3.6.7 dsize 128

3.6.8 flags 129

3.6.9 flow 129

3.6.10 flowbits 130

3.6.11 seq 130

3.6.12 ack 131

3.6.13 window 131

3.6.14 itype 131

3.6.15 icode 132

3.6.16 icmpid . 132

3.6.17 icmpseq . 132

3.6.18 rpc 133

3.6.19 ipproto .133

3.6.20 sameip 133

3.6.21 streamsize . 134

3.6.22 Non-Payload Detection Quick Reference 134

3.7 Post-Detection Rule Options 135

3.7.1 logto 135

5

3.7.2 session 135

3.7.3 resp 136

3.7.4 react 136

3.7.5 tag 137

3.7.6 activates 138

3.7.7 activatedby . 138

3.7.8 count 139

3.7.9 Post-Detection Quick Reference 139

3.8 Event Thresholding 139

3.8.1 Standalone Options 140

3.8.2 Standalone Format 140

3.8.3 Rule Keyword Format 140

3.8.4 Rule Keyword Format 140

3.8.5 Examples 141

3.9 Event Suppression 143

3.9.1 Format 143

3.9.2 Examples 143

3.10 Snort Multi-Event Logging (Event Queue) 144

3.10.1 Event Queue Configuration Options 144

3.10.2 Event Queue Configuration Examples 144

3.11 Writing Good Rules 145

3.11.1 Content Matching 145

3.11.2 Catch the Vulnerability, Not the Exploit 145

3.11.3 Catch the Oddities of the Protocol in the Rule 145

3.11.4 Optimizing Rules 146

3.11.5 Testing Numerical Values 147

4 Making Snort Faster 150

4.1 MMAPed pcap 150

5 Dynamic Modules 151

5.1 Data Structures 151

5.1.1 DynamicPluginMeta 151

5.1.2 DynamicPreprocessorData 151

5.1.3 DynamicEngineData 152

5.1.4 SFSnortPacket 153

5.1.5 Dynamic Rules 158

5.2 Required Functions 165

5.2.1 Preprocessors 165

5.2.2 Detection Engine 165

6

5.2.3 Rules 167

5.3 Examples 167

5.3.1 Preprocessor Example 168

5.3.2 Rules 169

6 Snort Development 173

6.1 Submitting Patches 173

6.2 Snort Data Flow 173

6.2.1 Preprocessors 173

6.2.2 Detection Plugins 174

6.2.3 Output Plugins 174

6.3 The Snort Team 175

7

Chapter 1

Snort Overview

This manual is based onWriting Snort Rulesby Martin Roesch and further work from Chris Green<cmg@snort.org>.
It is now maintained by Brian Caswell<bmc@snort.org>. If you have a better way to say something or find that
something in the documentation is outdated, drop us a line and we will update it. If you would like to submit patches
for this document, you can find the latest version of the documentation in LATEX format in the Snort CVS repository at
/doc/snort_manual.tex . Small documentation updates are the easiest way to help outthe Snort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of command line options to play with, and it’s not always obvious
which ones go together well. This file aims to make using Snorteasier for new users.

Before we proceed, there are a few basic concepts you should understand about Snort. Snort can be configured to run
in three modes:

• Sniffer mode,which simply reads the packets off of the network and displays them for you in a continuous
stream on the console (screen).

• Packet Logger mode,which logs the packets to disk.

• Network Intrusion Detection System (NIDS) mode,the most complex and configurable configuration, which
allows Snort to analyze network traffic for matches against auser-defined rule set and performs several actions
based upon what it sees.

• Inline mode,which obtains packets from iptables instead of from libpcapand then causes iptables to drop or
pass packets based on Snort rules that use inline-specific rule types.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to print out the TCP/IP packet headers to the screen (i.e. sniffer mode),
try this:

./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If you want to see the
application data in transit, try the following:

./snort -vd

8

This instructs Snort to display the packet data as well as theheaders. If you want an even more descriptive display,
showing the data link layer headers, do this:

./snort -vde

(As an aside, these switches may be divided up or smashed together in any combination. The last command could also
be typed out as:

./snort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you need to specify a
logging directory and Snort will automatically know to go into packet logger mode:

./snort -dev -l ./log

Of course, this assumes you have a directory namedlog in the current directory. If you don’t, Snort will exit with
an error message. When Snort runs in this mode, it collects every packet it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -l switch, you may notice that Snort sometimes uses the address of the remote computer
as the directory in which it places packets and sometimes it uses the local host address. In order to log relative to the
home network, you need to tell Snort which network is the homenetwork:

./snort -dev -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as application data into the
directory./log , and you want to log the packets relative to the 192.168.1.0 class C network. All incoming packets
will be recorded into subdirectories of the log directory, with the directory names being based on the address of the
remote (non-192.168.1) host.

△! NOTE
Note that if both the source and destination hosts are on the home network, they are logged to a directory
with a name based on the higher of the two port numbers or, in the case of a tie, the source address.

If you’re on a high speed network or you want to log the packetsinto a more compact form for later analysis, you
should consider logging in binary mode. Binary mode logs thepackets in tcpdump format to a single binary file in the
logging directory:

./snort -l ./log -b

Note the command line changes here. We don’t need to specify ahome network any longer because binary mode
logs everything into a single file, which eliminates the needto tell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or specify the -d or -e switches because in binary mode the entire
packet is logged, not just sections of it. All you really needto do to place Snort into logger mode is to specify a logging
directory at the command line using the -l switch—the -b binary logging switch merely provides a modifier that tells
Snort to log the packets in something other than the default output format of plain ASCII text.

Once the packets have been logged to the binary file, you can read the packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or Ethereal). Snort can also read the packets back by using the

9

-r switch, which puts it into playback mode. Packets from anytcpdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run a binary log file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

./snort -dv -r packet.log

You can manipulate the data in the file in a number of ways through Snort’s packet logging and intrusion detection
modes, as well as with the BPF interface that’s available from the command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPF filter at the command line and Snort will only see the
ICMP packets in the file:

./snort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snort and tcpdump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) mode sothat you don’t record every single packet sent down
the wire, try this:

./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf

wheresnort.conf is the name of your rules file. This will apply the rules configured in thesnort.conf file to
each packet to decide if an action based upon the rule type in the file should be taken. If you don’t specify an output
directory for the program, it will default to/var/log/snort .

One thing to note about the last command line is that if Snort is going to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake of speed. The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It’s also not necessary to record the data link headers for most applications, so you can usually omit the -e switch, too.

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf

This will configure Snort to run in its most basic NIDS form, logging packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory structure (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort in NIDS mode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alerts. The full alert mechanism prints out the alert message in
addition to the full packet headers. There are several otheralert output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are seven alertmodes available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modes are accessed with the -A command line switch. These
options are:

Option Description
-A fast Fast alert mode. Writes the alert in a simple format with a timestamp, alert message, source and

destination IPs/ports.
-A full Full alert mode. This is the default alert mode and will be used automatically if you do not specify

a mode.
-A unsock Sends alerts to a UNIX socket that another program can listenon.
-A none Turns off alerting.
-A console Sends “fast-style” alerts to the console (screen).
-A cmg Generates “cmg style” alerts.

10

Packets can be logged to their default decoded ASCII format or to a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N command line switch.

For output modes available through the configuration file, see Section 2.5.

△! NOTE
Command line logging options override any output options specified in the configuration file. This allows
debugging of configuration issues quickly via the command line.

To send alerts to syslog, use the -s switch. The default facilities for the syslog alerting mechanism are LOGAUTHPRIV
and LOGALERT. If you want to configure other facilities for syslog output, use the output plugin directives in the
rules files. See Section 2.5.1 for more details on configuringsyslog output.

For example, use the following command line to log to default(decoded ASCII) facility and send alerts to syslog:

./snort -c snort.conf -l ./log -h 192.168.1.0/24 -s

As another example, use the following command line to log to the default facility in /var/log/snort and send alerts to a
fast alert file:

./snort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually look like the following:

[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user what component of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. In this case, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred to as Signature ID). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directly into the rules with thesid option. In this case,56 represents a
T/TCP event.

The third number is the revision ID. This number is primarilyused when writing signatures, as each rendition of the
rule should increment this number with therev option.

1.4.3 High Performance Configuration

If you want Snort to gofast(like keep up with a 1000 Mbps connection), you need to use unified logging and a unified
log reader such asbarnyard. This allows Snort to log alerts in a binary form as fast as possible while another program
performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsable, but still somewhat fast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce minimal alerts. For example:

./snort -b -A fast -c snort.conf

11

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packets may not be appropriate for all installations. The Alert rules
are applied first, then the Pass rules, and finally, Log rules are applied. This sequence is somewhat counterintuitive,
but it’s a more foolproof method than allowing a user to writea hundred alert rules that are then disabled by an errant
pass rule. For more information on rule types, see Section 3.2.1.

If you know what you’re doing, you can use the -o switch to change the default rule application behavior to apply Pass
rules, then Alert rules, then Log rules:

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf -o

As of Snort 2.6.0, the command line flags--alert-before-pass and--treat-drop-as-alert were added to han-
dle changes to rule ordering and fix an issue when pass and droprules were not always enforced. The--alert-before-pass
option forces alert rules to take affect in favor of a pass rule. The--treat-drop-as-alert causes drop, sdrop, and
reject rules and any associated alerts to be logged as alerts, rather then the normal action. This allows use of an inline
policy with passive/IDS mode.

Additionally, the--process-all-events option causes Snort to process every event associated with apacket, while
taking the actions based on the rules ordering. Without thisoption (default case), only the events for the first action
based on rules ordering are processed.

△! NOTE
Pass rules are special cases here, in that the event processing is terminated when a pass rule is encountered,
regardless of the use of--process-all-events .

△! NOTE
The additions with Snort 2.6.0 will result in the deprecation of the -o switch in a future release.

1.5 Inline Mode

Snort 2.3.0 RC1 integrated the intrusion prevention system(IPS) capability ofSnort Inline into the official Snort
project.Snort Inline obtains packets from iptables instead of libpcap and then uses new rule types to help iptables
pass or drop packets based on Snort rules.

In order forSnort Inline to work properly, you must download and compile the iptablescode to include “make
install-devel” (http://www.iptables.org). This will install thelibipq library that allowsSnort Inline to inter-
face with iptables. Also, you must build and install LibNet,which is available fromhttp://www.packetfactory.net .

There are three rule types you can use when running Snort withSnort Inline :

• drop - The drop rule type will tell iptables to drop the packet and log it via usual Snort means.

• reject - The reject rule type will tell iptables to drop the packet, log it via usual Snort means, and send a TCP
reset if the protocol is TCP or an icmp port unreachable if theprotocol is UDP.

• sdrop - The sdrop rule type will tell iptables to drop the packet. Nothing is logged.

△! NOTE
You can also replace sections of the packet payload when using Snort Inline . See Section 1.5.2 for more
information.

When using areject rule, there are two options you can use to send TCP resets:

12

http://www.iptables.org
http://www.packetfactory.net

• You can use a RAW socket (the default behavior forSnort Inline), in which case you must have an interface
that has an IP address assigned to it. If there is not an interface with an IP address assigned with access to the
source of the packet, the packet will be logged and the reset packet will never make it onto the network.

• You can also now perform resets via a physical device when using iptables. We take the indev name from
ip queue and use this as the interface on which to send resets. Weno longer need an IP loaded on the bridge,
and can remain pretty stealthy as theconfig layer2 resets in snort inline.conf takes a source MAC address
which we substitue for the MAC of the bridge. For example:

config layer2resets

tells Snort Inline to use layer2 resets and uses the MAC address of the bridge as the source MAC in the
packet, and:

config layer2resets: 00:06:76:DD:5F:E3

will tell Snort Inline to use layer2 resets and uses the source MAC of 00:06:76:DD:5F:E3 in the reset packet.

• The command-line option--disable-inline-initialization can be used to not initialize IPTables when in
inline mode. To be used with command-line option-T to test for a valid configuration without requiring opening
inline devices and adversely affecting traffic flow.

1.5.1 Snort Inline Rule Application Order

The current rule application order is:

->activation->dynamic->drop->sdrop->reject->alert-> pass->log

This will ensure that a drop rule has precedence over an alertor log rule. You can use the -o flag to change the rule
application order to:

->activation->dynamic->pass->drop->sdrop->reject->a lert->log

1.5.2 Replacing Packets with Snort Inline

Additionally, Jed Haile’s content replace code allows you to modify packets before they leave the network. For
example:

alert tcp any any <> any 80 (msg: "tcp replace"; content:"GET "; replace:"BET";)
alert udp any any <> any 53 (msg: "udp replace"; \

content: "yahoo"; replace: "xxxxx";)

These rules will comb TCP port 80 traffic looking for GET, and UDP port 53 traffic looking for yahoo. Once they are
found, they are replaced with BET and xxxxx, respectively. The only catch is that the replace must be the same length
as the content.

1.5.3 Installing Snort Inline

To install Snort inline, use the following command:

./configure --enable-inline
make
make install

13

1.5.4 Running Snort Inline

First, you need to ensure that the ipqueue module is loaded. Then, you need to send traffic to SnortInline using the
QUEUE target. For example:

iptables -A OUTPUT -p tcp --dport 80 -j QUEUE

sends all TCP traffic leaving the firewall going to port 80 to the QUEUE target. This is what sends the packet from
kernel space to user space (Snort Inline). A quick way to get all outbound traffic going to the QUEUE is to use the
rc.firewall script created and maintained by the Honeynet Project (http://www.honeynet.org/papers/honeynet/tools/)
This script is well-documented and allows you to direct packets toSnort Inline by simply changing the QUEUE
variable to yes.

Finally, start Snort Inline:

snort_inline -QDc ../etc/drop.conf -l /var/log/snort

You can use the following command line options:

• -Q - Gets packets from iptables.

• -D - RunsSnort Inline in daemon mode. The process ID is stored at/var/run/snort inline.pid

• -c - Reads the following configuration file.

• -l - Logs to the following directory.

Ideally, Snort Inline will be run using only its own drop.rules. If you want to use Snort for just alerting, a separate
process should be running with its own rule set.

1.5.5 Using the Honeynet Snort Inline Toolkit

The Honeynet Snort Inline Toolkit is a statically compiledSnort Inline binary put together by the Honeynet Project
for the Linux operating system. It comes with a set of drop.rules, theSnort Inline binary, a snort-inline rotation
shell script, and a good README. It can be found at:

http://www.honeynet.org/papers/honeynet/tools/

1.5.6 Troubleshooting Snort Inline

If you run Snort Inline and see something like this:

Initializing Output Plugins!
Reading from iptables
Log directory = /var/log/snort
Initializing Inline mode
InlineInit: : Failed to send netlink message: Connection re fused

More than likely, the ipqueue module is not loaded or ipqueue support is not compiled into your kernel. Either
recompile your kernel to support ipqueue, or load the module.

The ip queue module is loaded by executing:

insmod ip_queue

Also, if you want to ensure Snort Inline is getting packets, you can start it in the following manner:

snort_inline -Qvc <configuration file>

This will display the header of every packet that Snort Inline sees.

14

http://www.honeynet.org/papers/honeynet/tools/
http://www.honeynet.org/papers/honeynet/tools/

1.6 Miscellaneous

1.6.1 Running in Daemon Mode

If you want to run Snort in daemon mode, you can the add -D switch to any combination described in the previous
sections. Please notice that if you want to be able to restartSnort by sending a SIGHUP signal to the daemon, you
mustspecify the full path to the Snort binary when you start it, for example:

/usr/local/bin/snort -d -h 192.168.1.0/24 \
-l /var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

Snort PID File

When Snort is run in daemon mode, the daemon creates a PID file in the log directory. In Snort 2.6, the--pid-path
command line switch causes Snort to write the PID file in the directory specified.

Additionally, the--create-pidfile switch can be used to force creation of a PID file even when not running in
daemon mode.

The PID file will be locked so that other snort processes cannot start. Use the--nolock-pidfile switch to not lock
the PID file.

1.6.2 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, you might want to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if you don’t want people on the mailing list to know the IP
addresses involved. You can also combine the -O switch with the -h switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who sees the address of the attacking host. For example, you
could use the following command to read the packets from a logfile and dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

./snort -d -v -r snort.log -O -h 192.168.1.0/24

1.6.3 Specifying Multiple-Instance Identifiers

In Snort v2.4, the-G command line option was added that specifies an instance identifier for the event logs. This option
can be used when running multiple instances of snort, eitheron different CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specified to generate unique event IDs. Users can specify either a
decimal value (-G 1) or hex value preceded by 0x (-G 0x11). This is also supported via a long option--logid .

1.7 Reading Pcaps

Instead of having Snort listen on an interface, you can give it a packet capture to read. Snort will read and analyze the
packets as if they came off the wire. This can be useful for testing and debugging Snort.

1.7.1 Command line arguments

Any of the below can be specified multiple times on the commandline (-r included) and in addition to other Snort
command line options. Note, however, that specifying--pcap-reset and--pcap-show multiple times has the same
effect as specifying them once.

15

Option Description

-r <file> Read a single pcap.
--pcap-single=<file> Same as -r. Added for completeness.
--pcap-file=<file> File that contains a list of pcaps to read. Can specifiy path to

pcap or directory to recurse to get pcaps.
--pcap-list="<list>" A space separated list of pcaps to read.
--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ascii order.
--pcap-filter=<filter> Shell style filter to apply when getting pcaps from file or direc-

tory. This filter will apply to any--pcap-file or --pcap-dir
arguments following. Use--pcap-no-filter to delete filter
for following --pcap-file or --pcap-dir arguments or speci-
fiy --pcap-filter again to forget previous filter and to apply
to following --pcap-file or --pcap-dir arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory.
--pcap-reset If reading multiple pcaps, reset snort to post-configuration state

before reading next pcap. The default, i.e. without this option,
is not to reset state.

--pcap-show Print a line saying what pcap is currently being read.

1.7.2 Examples

Read a single pcap

$ snort -r foo.pcap
$ snort --pcap-single=foo.pcap

Read pcaps from a file

$ cat foo.txt
foo1.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-file=foo.txt

This will read foo1.pcap, foo2.pcap and all files under /home/foo/pcaps. Note that Snort will not try to determine
whether the files under that directory are really pcap files ornot.

Read pcaps from a command line list

$ snort --pcap-list="foo1.pcap foo2.pcap foo3.pcap"

This will read foo1.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory

$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /home/foo/pcaps.

16

Using filters

$ cat foo.txt
foo1.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt
$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pc aps

The above will only include files that match the shell pattern”*.pcap”, in other words, any file ending in ”.pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps

In the above, the first filter ”*.pcap” will only be applied to the pcaps in the file ”foo.txt” (and any directories that are
recursed in that file). The addition of the second filter ”*.cap” will cause the first filter to be forgotten and then applied
to the directory /home/foo/pcaps, so only files ending in ”.cap” will be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=/home/foo/pcaps

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcaps will be included.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=/home/foo/pcaps \
> --pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps2

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcaps will be included, then the filter ”*.cap” will be applied
to files found under /home/foo/pcaps2.

Resetting state

$ snort --pcap-dir=/home/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foo/pcaps, but after each pcap is read, Snort will be reset to
a post-configuration state, meaning all buffers will be flushed, statistics reset, etc. For each pcap, it will be like Snort
is seeing traffic for the first time.

Printing the pcap

$ snort --pcap-dir=/home/foo/pcaps --pcap-show

The above example will read all of the files under /home/foo/pcaps and will print a line indicating which pcap is
currently being read.

17

1.8 Tunneling Protocol Support

Snort supports decoding of GRE, IP in IP and PPTP. To enable support, an extra configuration option is necessary:

$./configure --enable-gre

To enable IPv6 support, one still needs to use the configuration option:

$./configure --enable-ipv6

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scenarios such as

Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or

Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is logged, e.g.

Eth IP1 GRE IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

and

Eth IP1 IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

△! NOTE
Decoding of PPTP, which utilizes GRE and PPP, is not currently supported on architectures that require word
alignment such as SPARC.

18

1.9 More Information

Chapter 2 contains much information about many configuration options available in the configuration file. The Snort
manual page and the output ofsnort -? or snort --help contain information that can help you get Snort running
in several different modes.

△! NOTE
In many shells, a backslash (\) is needed to escape the ?, so you may have to typesnort - \? instead of
snort -? for a list of Snort command line options.

The Snort web page (http://www.snort.org) and the Snort Users mailing list (http://marc.theaimsgroup.com/?l=snort-users
at snort-users@lists.sourceforge.net provide informative announcements as well as a venue for community
discussion and support. There’s a lot to Snort, so sit back with a beverage of your choosing and read the documenta-
tion and mailing list archives.

19

http://www.snort.org
http://marc.theaimsgroup.com/?l=snort-users

Chapter 2

Configuring Snort

2.0.1 Includes

Theinclude keyword allows other rules files to be included within the rules file indicated on the Snort command line.
It works much like an #include from the C programming language, reading the contents of the named file and adding
the contents in the place where the include statement appears in the file.

Format

include <include file path/name>

△! NOTE
Note that there is no semicolon at the end of this line.

Included files will substitute any predefined variable values into their own variable references. See Section 2.0.2 for
more information on defining and using variables in Snort rules files.

2.0.2 Variables

Three types of variables may be defined in Snort:

• var

• portvar

• ipvar

△! NOTE
Note: ’ipvar’s are only enabled with IPv6 support. Without IPv6 support, use a regular ’var’.

These are simple substitution variables set with thevar , ipvar , or portvar keywords as shown in Figure 2.1.

20

var RULES_PATH rules/
portvar MY_PORTS [22,80,1024:1050]
ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]
alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN pa cket";)
include $RULE_PATH/example.rule

Figure 2.1: Example of Variable Definition and Usage

IP Variables and IP Lists

IPs may be specified individually, in a list, as a CIDR block, or any combination of the three. If IPv6 support is
enabled, IP variables should be specified using ’ipvar’ instead of ’var’. Using ’var’ for an IP variable is still allowed
for backward compatibility, but it will be deprecated in a future release.

IPs, IP lists, and CIDR blocks may be negated with ’!’. Negation is handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list was logically OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IP from 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The element ’any’ can be used to match all IPs, although ’!any’
is not allowed. Also, negated IP ranges that are more generalthan non-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP lists.

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]

alert tcp $EXAMPLE any -> any any (msg:"Example"; sid:1;)

alert tcp [1.0.0.0/8,!1.1.1.0/24] any -> any any (msg:"Exa mple";sid:2;)

The following examples demonstrate some invalid uses of IP variables and IP lists.

Use of !any:

ipvar EXAMPLE any
alert tcp !$EXAMPLE any -> any any (msg:"Example";sid:3;)

Different use of !any:

ipvar EXAMPLE !any
alert tcp $EXAMPLE any -> any any (msg:"Example";sid:3;)

Logical contradictions:

ipvar EXAMPLE [1.1.1.1,!1.1.1.1]

Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,!1.1.0.0/16]

21

Port Variables and Port Lists

Portlists supports the declaration and lookup of ports and the representation of lists and ranges of ports. Variables,
ranges, or lists may all be negated with ’!’. Also, ’any’ willspecify any ports, but ’!any’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranges may be specified with a ’:’, such as in:

[10:50,888:900]

Port variables should be specified using ’portvar’. The use of ’var’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a ’var’ can still be used to declare a port variable, provided the variable
name either ends with ’PORT’ or begins with ’PORT’.

The following examples demonstrate several valid usages ofboth port variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [!70:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLE1 -> any $EXAMPLE2_PORT (msg:"Exampl e"; sid:1;)

alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example"; sid :2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Exampl e"; sid:3;)

Several invalid examples of port variables and port lists are demonstrated below:

Use of !any:

portvar EXAMPLE5 !any
var EXAMPLE5 !any

Logical contradictions:

portvar EXAMPLE6 [80,!80]

Ports out of range:

portvar EXAMPLE7 [65536]

Incorrect declaration and use of a port variable:

var EXAMPLE8 80
alert tcp any $EXAMPLE8 -> any any (msg:"Example"; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLE1 any -> any any (msg:"Example"; sid:5;)

22

Variable Modifiers

Rule variable names can be modified in several ways. You can define meta-variables using the $ operator. These can
be used with the variable modifier operators? and- , as described in the following table:

Variable Syntax Description

var Defines a meta-variable.
$(var) or $var Replaces with the contents of variablevar .
$(var:-default) Replaces the contents of the variablevar with “default” if var is undefined.
$(var:?message) Replaces with the contents of variablevar or prints out the error message and exits.

See Figure 2.2 for an example of advanced variable usage in action.

ipvar MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Figure 2.2: Figure Advanced Variable Usage Example

Limitations

When embedding variables, types can not be mixed. For instance, port variables can be defined in terms of other port
variables, but old-style variables (with the ’var’ keyword) can not be embedded inside a ’portvar’.

Valid embedded variable:

portvar pvar1 80
portvar pvar2 [$pvar1,90]

Invalid embedded variable:

var pvar1 80
portvar pvar2 [$pvar,90]

Likewise, variables can not be redefined if they were previously defined as a different type. They should be renamed
instead:

Invalid redefinition:

var pvar 80
portvar pvar 90

2.0.3 Config

Many configuration and command line options of Snort can be specified in the configuration file.

Format

config <directive> [: <value>]

Directives

Table 2.1: Config Directives

Command Example Description

23

alert with interface name config alert with interface name Appends interface name to alert (snort
-I).

alertfile config alertfile: alerts Sets the alerts output file.
asn1 config asn1:256 Specifies the maximum number of nodes

to track when doing ASN1 decoding.
See Section 3.5.21 for more information
and examples.

autogenerate preprocessor decoder rulesconfig autogenerate preprocessor decoder rulesIf Snort was configured to enable de-
coder and preprocessor rules, this option
will cause Snort to revert back to it’s
original behavior of alerting if the de-
coder or preprocessor generates an event.

bpf file config bpf file: filters.bpf Specifies BPF filters (snort -F).
checksum drop config checksum drop : all Types of packets to drop if invalid check-

sums. Values: none , noip , notcp ,
noicmp , noudp , ip , tcp , udp , icmp or
all (only applicable in inline mode and
for packets checked perchecksum mode
config option).

checksum mode config checksum mode : all Types of packets to calculate checksums.
Values: none , noip , notcp , noicmp ,
noudp , ip , tcp , udp , icmp or all .

chroot config chroot: /home/snort Chroots to specified dir (snort -t).
classification config classification:

misc-activity,Misc activity,3
See Table 3.2 for a list of classifications.

daemon config daemon Forks as a daemon (snort -D).
decode data link config decode data link Decodes Layer2 headers (snort -e).
default rule state config default rule state:

disabled
Global configuration directive to enable
or disable the loading of rules into the de-
tection engine. Default (with or without
directive) is enabled. Specifydisabled
to disable loading rules.

24

detection config detection:
search-method ac
no stream inserts
max queue events 128

Makes changes to the detection engine.
The following options can be used:

• search-method <ac | ac-std
| ac-bnfa | acs | ac-banded
| ac-sparsebands | lowmem >

– ac Aho-Corasick Full (high
memory, best performance)

– ac-std Aho-Corasick Stan-
dard (moderate memory,
high performance)

– ac-bnfa Aho-Corasick NFA
(low memory, high perfor-
mance)

– acs Aho-Corasick Sparse
(small memory, moderate
performance)

– ac-banded Aho-Corasick
Banded (small memory,
moderate performance)

– ac-sparsebands Aho-
Corasick Sparse-Banded
(small memory, high perfor-
mance)

– lowmem Low Memory Key-
word Trie (small memory,
low performance)

• no stream inserts

• max queue events <integer >

disable decode alerts config disable decode alerts Turns off the alerts generated by the de-
code phase of Snort.

disable inline init failopen config disable inline init
failopen

Disables failopen thread that al-
lows inline traffic to pass while
Snort is starting up. Only use-
ful if Snort was configured with
–enable-inline-init-failopen. (snort
--disable-inline-init-failopen)

disable ipopt alerts config disable ipopt alerts Disables IP option length validation
alerts.

disable tcpopt alerts config disable tcpopt alerts Disables option length validation alerts.
disable tcpopt experimental
alerts

config disable tcpopt experiment
al alerts

Turns off alerts generated by experimen-
tal TCP options.

disable tcpopt obsolete
alerts

config disable tcpopt obsole
te alerts

Turns off alerts generated by obsolete
TCP options.

disable tcpopt ttcp alerts config disable tcpopt ttcp alerts Turns off alerts generated by T/TCP op-
tions.

disable ttcp alerts config disable ttcp alerts Turns off alerts generated by T/TCP op-
tions.

dump chars only config dump chars only Turns on character dumps (snort -C).
dump payload config dump payload Dumps application layer (snort -d).

25

dump payload verbose config dump payload verbose Dumps raw packet starting at link layer
(snort -X).

enable decode drops config enable decode drops Enables the dropping of bad packets
identified by decoder (only applicable in
inline mode).

enable decode oversized
alerts

config enable decode oversized
alerts

Enable alerting on packets that have
headers containing length fields for
which the value is greater than the length
of the packet.

enable decode oversized drops config enable decode oversized
drops

Enable dropping packets that have
headers containing length fields
for which the value is greater
than the length of the packet.
enable decode oversized alerts
must also be enabled for this to be
effective (only applicable in inline
mode).

enable ipopt drops config enable ipopt drops Enables the dropping of bad packets with
bad/truncated IP options (only applicable
in inline mode).

enable mpls multicast config enable mpls multicast Enables support for MPLS multicast.
This option is needed when the network
allows MPLS multicast traffic. When
this option is off and MPLS multicast
traffic is detected, Snort will generate an
alert. By default, it is off.

enable mpls overlapping ip config enable mpls overlapping ip Enables support for overlapping IP ad-
dresses in an MPLS network. In a nor-
mal situation, where there are no over-
lapping IP addresses, this configuration
option should not be turned on. How-
ever, there could be situations where two
private networks share the same IP space
and different MPLS labels are used to
differentiate traffic from the two VPNs.
In such a situation, this configuration op-
tion should be turned on. By default, it is
off.

enable tcpopt drops config enable tcpopt drops Enables the dropping of bad packets with
bad/truncated TCP option (only applica-
ble in inline mode).

enable tcpopt experimental
drops

config enable tcpopt experi
mental drops

Enables the dropping of bad packets with
experimental TCP option. (only applica-
ble in inline mode).

enable tcpopt obsolete
drops

config enable tcpopt obsole
te drops

Enables the dropping of bad packets with
obsolete TCP option. (only applicable in
inline mode).

enable tcpopt ttcp drops enable tcpopt ttcp drops Enables the dropping of bad packets with
T/TCP option. (only applicable in inline
mode).

enable ttcp drops enable ttcp drops Enables the dropping of bad packets with
T/TCP option. (only applicable in inline
mode).

26

event queue config event queue: max queue
512 log 100 order events
priority

Specifies conditions about Snort’s event
queue. You can use the following op-
tions:

• max queue <integer > (max
events supported)

• log <integer > (number of
events to log)

• order events
[priority |content length]
(how to order events within the
queue)

See Section 3.10 for more information
and examples.

flexresp2 attempts config flexresp2 attempts: 15 Specify the number of TCP reset packets
to send to the source of the attack. Valid
values are 0 to 20, however values less
than 4 will default to 4. The default value
without this option is 4. (Snort must be
compiled with –enable-flexresp2)

flexresp2 interface config flexresp2 interface:
eth0

Specify the response interface to use. In
Windows this can also be the interface
number. (Snort must be compiled with
–enable-flexresp2)

flexresp2 memcap config flexresp2 memcap: 100000 Specify the memcap for the hash table
used to track the time of responses. The
times (hashed on a socket pair plus pro-
tocol) are used to limit sending a re-
sponse to the same half of a socket pair
every couple of seconds. Default is
1048576 bytes. (Snort must be compiled
with –enable-flexresp2)

flexresp2 rows config flexresp2 rows: 2048 Specify the number of rows for the hash
table used to track the time of responses.
Default is 1024 rows. (Snort must be
compiled with –enable-flexresp2)

flowbits size config flowbits size: 128 Specifies the maximum number of flow-
bit tags that can be used within a rule set.

ignore ports config ignore ports: udp 1:17
53

Specifies ports to ignore (useful for ig-
noring noisy NFS traffic). Specify the
protocol (TCP, UDP, IP, or ICMP), fol-
lowed by a list of ports. Port ranges are
supported.

interface config interface: xl0 Sets the network interface (snort -i).

27

ipv6 frag config ipv6 frag:
bsd icmp frag alert off,
bad ipv6 frag alert
off, frag timeout 120,
max frag sessions 100000

The following options can be used:

• bsd icmp frag alert on|off
(Specify whether or not to alert.
Default is on)

• bad ipv6 frag alert on|off
(Specify whether or not to alert.
Default is on)

• frag timeout <integer >

(Specify amount of time in sec-
onds to timeout first frag in hash
table)

• max frag sessions
<integer > (Specify the number
of fragments to track in the hash
table)

layer2resets config layer2resets:
00:06:76:DD:5F:E3

This option is only available when run-
ning in inline mode. See Section 1.5.

logdir config logdir: /var/log/snort Sets the logdir (snort -l).
max attribute hosts config max attribute hosts:16384 Sets a limit on the maximum number

of hosts to read from the attribute ta-
ble. Minimum value is 32 and the max-
imum is 524288 (512k). The default is
10000. If the number of hosts in the at-
tribute table exceeds this value, an error
is logged and the remainder of the hosts
are ignored. This option is only sup-
ported with a Host Attribute Table (see
section 2.6).

max mpls labelchain len config max mpls labelchain len:1 Sets a Snort-wide limit on the number of
MPLS headers a packet can have. Its de-
fault value is -1, which means that there
is no limit on label chain length.

min ttl config min ttl:30 Sets a Snort-wide minimum ttl to ignore
all traffic.

mpls payload type config mpls payload type: ipv4 Sets a Snort-wide MPLS payload type.
In addition to ipv4, ipv6 and ethernet are
also valid options. The default MPLS
payload type is ipv4

no promisc config no promisc Disables promiscuous mode (snort
-p).

nolog config nolog Disables logging. Note: Alerts will still
occur. (snort -N).

nopcre config nopcre Disables pcre pattern matching.
pcre match limit config pcre match limit:

<integer >

Restricts the amount of backtracking a
given PCRE option. For example, it will
limit the number of nested repeats within
a pattern. A value of -1 allows for unlim-
ited PCRE, up to the PCRE library com-
piled limit (around 10 million). A value
of 0 results in no PCRE evaluation. The
snort default value is 1500.

28

pcre match limit recursion config pcre match limit recursion:
<integer >

Restricts the amount of stack used by a
given PCRE option. A value of -1 allows
for unlimited PCRE, up to the PCRE li-
brary compiled limit (around 10 million).
A value of 0 results in no PCRE evalu-
ation. The snort default value is 1500.
This option is only useful if the value is
less than thepcre match limit

obfuscate config obfuscate Obfuscates IP Addresses (snort -O).
order config order: pass alert log

activation
Changes the order that rules are evalu-
ated.

pkt count config pkt count: 13 Exits after N packets (snort -n).
profile preprocs config profile preprocs Print statistics on preprocessor perfor-

mance. See Section 2.4.2 for more de-
tails.

profile rules config profile rules Print statistics on rule performance. See
Section 2.4.1 for more details.

quiet config quiet Disables banner and status reports
(snort -q).

read bin file config read bin file:
test alert.pcap

Specifies a pcap file to use (instead of
reading from network), same effect as -
r <tf> option.

reference config reference: myref
http://myurl.com/?id=

Adds a new reference system to Snort.

reference net config reference net
192.168.0.0/24

For IP obfuscation, the obfuscated net
will be used if the packet contains an
IP address in the reference net. Also
used to determine how to set up the log-
ging directory structure for thesession
post detection rule option and ascii out-
put plugin - an attempt is made to name
the log directories after the IP address
that is not in the reference net.

set gid config set gid: 30 Changes GID to specified GID (snort
-g).

set uid set uid: snort user Sets UID to<id> (snort -u).
show year config show year Shows year in timestamps (snort -y).
snaplen config snaplen: 2048 Set the snaplength of packet, same ef-

fect as -P <snaplen > or --snaplen
<snaplen > options.

stateful config stateful Sets assurance mode for stream (stream
is established).

tagged packet limit config tagged packet limit: 512 When a metric other thanpackets is
used in a tag option in a rule, this op-
tion sets the maximum number of pack-
ets to be tagged regardless of the amount
defined by the other metric. See Section
3.7.5 on using the tag option when writ-
ing rules for more details. The default
value when this option is not configured
is 256 packets. Setting this option to a
value of 0 will disable the packet limit.

threshold config threshold: memcap
100000

Set global memcap in bytes for thresh-
olding. Default is 1048576 bytes (1
megabyte).

29

timestats interval config timestats interval: 5 Set the amount of time in seconds be-
tween logging time stats. Default is 3600
(1 hour). Note this option is only avail-
able if Snort was built to use time stats
with --enable-timestats .

umask config umask: 022 Sets umask when running (snort -m).
utc config utc Uses UTC instead of local time for

timestamps (snort -U).
verbose config verbose Uses verbose logging to STDOUT

(snort -v).

30

2.1 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. Theyallow the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snort fairly easily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. The packet can be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured using thepreprocessor keyword. The format of the preprocessor directive
in the Snort rules file is:

preprocessor <name>: <options>

preprocessor minfrag: 128

Figure 2.3: Preprocessor Directive Format Example

2.1.1 Frag3

The frag3 preprocessor is a target-based IP defragmentation module for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed with the following goals:

1. Faster execution than frag2 with less complex data management.

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively for managing the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use when you have some assurance of locality of reference for the
data that you are handling but in high speed, heavily fragmented environments the nature of the splay trees worked
against the system and actually hindered performance. Frag3 uses the sfxhash data structure and linked lists for data
handling internally which allows it to have much more predictable and deterministic performance in any environment
which should aid us in managing heavily fragmented environments.

Target-based analysis is a relatively new concept in network-based intrusion detection. The idea of a target-based
system is to model the actual targets on the network instead of merely modeling the protocols and looking for attacks
within them. When IP stacks are written for different operating systems, they are usually implemented by people
who read the RFCs and then write their interpretation of whatthe RFC outlines into code. Unfortunately, there are
ambiguities in the way that the RFCs define some of the edge conditions that may occurr and when this happens
different people implement certain aspects of their IP stacks differently. For an IDS this is a big problem.

In an environment where the attacker can determine what style of IP defragmentation is being used on a partic-
ular target, the attacker can try to fragment packets such that the target will put them back together in a specific
manner while any passive systems trying to model the host traffic have to guess which way the target OS is going
to handle the overlaps and retransmits. As I like to say, if the attacker has more information about the targets on
a network than the IDS does, it is possible to evade the IDS. This is where the idea for “target-based IDS” came
from. For more detail on this issue and how it affects IDS, check out the famous Ptacek & Newsham paper at
http://www.snort.org/docs/idspaper/ .

The basic idea behind target-based IDS is that we tell the IDSinformation about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on information about how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this very topic in 2003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implementations handled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it out athttp://www.icir.org/vern/papers/activemap-oak03.pdf .

We can also present the IDS with topology information to avoid TTL-based evasions and a variety of other issues, but
that’s a topic for another day. Once we have this informationwe can start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a target-based module within Snort to test this idea.

31

http://www.snort.org/docs/idspaper/
http://www.icir.org/vern/papers/activemap-oak03.pdf

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2. There are at least two preprocessor directives required
to activate frag3, a global configuration directive and an engine instantiation. There can be an arbitrary number of
engines defined at startup with their own configuration, but only one global configuration.

Global Configuration

• Preprocessor name:frag3 global

• Available options: NOTE: Global configuration options are comma separated.

– max frags <number > - Maximum simultaneous fragments to track. Default is 8192.

– memcap <bytes > - Memory cap for self preservation. Default is 4MB.

– prealloc frags <number > - Alternate memory management mode. Use preallocated fragment nodes
(faster in some situations).

Engine Configuration

• Preprocessor name:frag3 engine

• Available options: NOTE: Engine configuration options are space separated.

– timeout <seconds > - Timeout for fragments. Fragments in the engine for longer than this period will
be automatically dropped. Default is 60 seconds.

– ttl limit <hops > - Max TTL delta acceptable for packets based on the first packet in the fragment.

Default is 5. △! NOTE

ttl limit is only available for backwards compatibility, and its value will be ignored.ttl limit will be
deprecated in a future release.

– min ttl <value > - Minimum acceptable TTL value for a fragment packet. Default is 1.

– detect anomalies - Detect fragment anomalies.

– bind to <ip list > - IP List to bind this engine to. This engine will only run for packets with destination
addresses contained within the IP List. Default value isall .

– policy <type > - Select a target-based defragmentation mode. Available types are first, last, bsd, bsd-
right, linux. Default type is bsd.

The Paxson Active Mapping paper introduced the terminologyfrag3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more mappings and would like to add to this list
please feel free to send us an email!

32

Platform Type

AIX 2 BSD
AIX 4.3 8.9.3 BSD
Cisco IOS Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) linux
OpenBSD (version unknown) linux
OpenVMS 7.1 BSD
OS/2 (version unknown) BSD
OSF1 V3.0 BSD
OSF1 V3.2 BSD
OSF1 V4.0,5.0,5.1 BSD
SunOS 4.1.4 BSD
SunOS 5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) First

format

preprocessor frag3_global
preprocessor frag3_engine

Figure 2.4: Example configuration (Basic)

preprocessor frag3_global: prealloc_nodes 8192
preprocessor frag3_engine: policy linux, bind_to 192.168 .1.0/24
preprocessor frag3_engine: policy first, bind_to [10.1.4 7.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last, detect_anomalie s

Figure 2.5: Example configuration (Advanced)

Note in the advanced example (Figure 2.5), there are three engines specified running withLinux, first and last
policies assigned. The first two engines are bound to specificIP address ranges and the last one applies to all other
traffic. Packets that don’t fall within the address requirements of the first two engines automatically fall through to the
third one.

33

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of anomalies. Its event output is packet-based so it will work with
all output modes of Snort. Read the documentation in thedoc/signatures directory with filenames that begin with
“123-” for information on the different event types.

2.1.2 Stream5

The Stream5 preprocessor is a target-based TCP reassembly module for Snort. It is intended to replace both the
Stream4 and flow preprocessors, and it is capable of trackingsessions for both TCP and UDP. With Stream5, the rule
’flow’ and ’flowbits’ keywords are usable with TCP as well as UDP traffic.

△! NOTE
Since Stream5 replaces Stream4, both cannot be used simultaneously. Remove the Stream4 and flow config-
urations from snort.conf when the Stream5 configuration is added.

Transport Protocols

TCP sessions are identified via the classic TCP ”connection”. UDP sessions are established as the result of a series of
UDP packets from two end points via the same set of ports. ICMPmessages are tracked for the purposes of checking
for unreachable and service unavailable messages, which effectively terminate a TCP or UDP session.

Target-Based

Stream5, like Frag3, introduces target-based actions for handling of overlapping data and other TCP anomalies. The
methods for handling overlapping data, TCP Timestamps, Data on SYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream5 are the results of extensive research with many target operating systems.

Stream API

Stream5 fully supports the Stream API (partly supported by Stream4), allowing other protocol normalizers/preprocessors
to dynamically configure reassembly behavior as required bythe application layer protocol, identify sessions that may
be ignored (large data transfers, etc), and update the identifying information about the session (application protocol,
direction, etc) that can later be used by rules.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, data received outside the TCP window, etc are configured via
thedetect anomalies option to the TCP configuration. Some of these anomalies are detected on a per-target basis.
For example, a few operating systems allow data in TCP SYN packets, while others do not.

Stream5 Global Configuration

Global settings for the Stream5 preprocessor.

preprocessor stream5_global: [track_tcp <yes|no>], [max _tcp <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[flush_on_alert], [show_rebuilt_packets], \
[prune_log_max <bytes>]

34

Option Description

track tcp <yes|no> Track sessions for TCP. The default is ”yes”.
max tcp <num sessions> Maximum simultaneous TCP sessions tracked. The default is

”256000”, maximum is ”1052672”, minimum is ”1”.
memcap <num bytes> Memcap for TCP packet storage. The default is ”8388608”

(8MB), maximum is ”1073741824” (1GB), minimum is
”32768” (32KB).

track udp <yes|no> Track sessions for UDP. The default is ”yes”.
max udp <num sessions> Maximum simultaneous UDP sessions tracked. The default is

”128000”, maximum is ”1052672”, minimum is ”1”.
track icmp <yes|no> Track sessions for ICMP. The default is ”yes”.
max icmp <num sessions> Maximum simultaneous ICMP sessions tracked. The default is

”64000”, maximum is ”1052672”, minimum is ”1”.
flush on alert Backwards compatibilty. Flush a TCP stream when an alert is

generated on that stream. The default is set to off.
show rebuilt packets Print/display packet after rebuilt (for debugging). The default is

set to off.
prune log max <num bytes> Print a message when a session terminates that was consum-

ing more than the specified number of bytes. The default is
”1048576” (1MB), minimum is ”0” (unlimited), maximum is
not bounded, other than by the memcap.

Stream5 TCP Configuration

Provides a means on a per IP address target to configure TCP policy. This can have multiple occurances, per policy
that is bound to an IP address or network. One default policy must be specified, and that policy is not bound to an IP
address or network.

preprocessor stream5_tcp: [bind_to <ip_addr>], [timeout <number secs>], \
[policy <policy_id>], [min_ttl <number>], \
[overlap_limit <number>], [max_window <number>], \
[require_3whs [<number secs>]], [detect_anomalies], \
[check_session_hijacking], [use_static_footprint_siz es], \
[dont_store_large_packets], [dont_reassemble_async], \
[max_queued_bytes <bytes>], [max_queued_segs <number se gs>], \
[ports <client|server|both> <all|number [number]*>], \
[ignore_any_rules]

Option Description

bind to <ip addr> IP address or network for this policy. The default is set to any.
timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, and

the maximum is ”86400” (approximately 1 day).

35

policy <policy id> The Operating System policy for the target OS.
The policy id can be one of the following:

Policy Name Operating Systems.

first Favor first overlapped segment.
last Favor first overlapped segment.
bsd FresBSD 4.x and newer, NetBSD 2.x and

newer, OpenBSD 3.x and newer
linux Linux 2.4 and newer
old-linux Linux 2.2 and earlier
windows Windows 2000, Windows XP, Windows

95/98/ME
win2003 Windows 2003 Server
vista Windows Vista
solaris Solaris 9.x and newer
hpux HPUX 11 and newer
hpux10 HPUX 10
irix IRIX 6 and newer
macos MacOS 10.3 and newer

min ttl <number> Minimum TTL. The default is ”1”, the minimum is ”1” and the
maximum is ”255”.

overlap limit <number> Limits the number of overlapping packets per session. The de-
fault is ”0” (unlimited), the minimum is ”0”, and the maximum
is ”255”.

max window <number> Maximum TCP window allowed. The default is ”0” (unlim-
ited), the minimum is ”0”, and the maximum is ”1073725440”
(65535 left shift 14). That is the highest possible TCP window
per RFCs. This option is intended to prevent a DoS against
Stream5 by an attacker using an abnormally large window, so
using a value near the maximum is discouraged.

require 3whs [<number seconds>] Establish sessions only on completion of a SYN/SYN-
ACK/ACK handshake. The default is set to off. The optional
number of seconds specifies a startup timeout. This allows a
grace period for existing sessions to be considered established
during that interval immediately after Snort is started. The de-
fault is ”0” (don’t consider existing sessions established), the
minimum is ”0”, and the maximum is ”86400” (approximately
1 day).

detect anomalies Detect and alert on TCP protocol anomalies. The default is set
to off.

check session hijacking Check for TCP session hijacking. This check validates the hard-
ware (MAC) address from both sides of the connect – as estab-
lished on the 3-way handshake against subsequent packets re-
ceived on the session. If an ethernet layer is not part of the pro-
tocol stack received by Snort, there are no checks performed.
Alerts are generated (per ’detect anomalies ’ option) for ei-
ther the client or server when the MAC address for one side or
the other does not match. The default is set to off.

use static footprint sizes emulate Stream4 behavior for building reassembled packet.The
default is set to off.

dont store large packets Performance improvement to not queue large packets in re-
assembly buffer. The default is set to off. Using this option
may result in missed attacks.

dont reassemble async Don’t queue packets for reassembly if traffic has not been seen
in both directions. The default is set to queue packets.

36

max queued bytes <bytes> Limit the number of bytes queued for reassembly on a given
TCP session to bytes. Default is ”1048576” (1MB). A value of
”0” means unlimited, with a non-zero minimum of ”1024”, and
a maximum of ”1073741824” (1GB). A message is written to
console/syslog when this limit is enforced.

max queued segs <num> Limit the number of segments queued for reassembly on a given
TCP session. The default is ”2621”, derived based on an aver-
age size of 400 bytes. A value of ”0” means unlimited, with a
non-zero minimum of ”2”, and a maximum of ”1073741824”
(1GB). A message is written to console/syslog when this limit
is enforced.

ports <client|server|both> <all|number(s)> Specify the client, server, or both and list of ports in
which to perform reassembly. This can appear more
than once in a given config. The default settings
are ports client 21 23 25 42 53 80 110 111 135 136
137 139 143 445 513 514 1433 1521 2401 3306 . The
minimum port allowed is ”1” and the maximum allowed is
”65535”.

ignore any rules Don’t process any-> any (ports) rules for TCP that attempt to
match payload if there are no port specific rules for the src or
destination port. Rules that have flow or flowbits will never be
ignored. This is a performance improvement and may result
in missed attacks. Using this does not affect rules that lookat
protocol headers, only those with content, PCRE, or byte test
options. The default is ”off”. This option can be used only in
default policy.

△! NOTE
If no options are specified for a given TCP policy, that is the default TCP policy. If only a bindto option is
used with no other options that TCP policy uses all of the default values.

Stream5 UDP Configuration

Configuration for UDP session tracking. Since there is no target based binding, there should be only one occurance of
the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [igno re_any_rules]

Option Description

timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, and
the maximum is ”86400” (approximately 1 day).

ignore any rules Don’t process any-> any (ports) rules for UDP that attempt to
match payload if there are no port specific rules for the src or
destination port. Rules that have flow or flowbits will never be
ignored. This is a performance improvement and may result
in missed attacks. Using this does not affect rules that lookat
protocol headers, only those with content, PCRE, or byte test
options. The default is ”off”.

37

△! NOTE
With the ignoreany rules option, a UDP rule will be ignored except when there is another port specific rule
that may be applied to the traffic. For example, if a UDP rule specifies destination port 53, the ’ignored’ any
-> any rule will be applied to traffic to/from port 53, but NOT to any other source or destination port. A list
of rule SIDs affected by this option are printed at Snort’s startup.

△! NOTE
With the ignoreany rules option, if a UDP rule that uses any-> any ports includes either flow or flowbits,
the ignoreany rules option is effectively pointless. Because of the potential impact of disabling a flowbits
rule, the ignoreany rules option will be disabled in this case.

Stream5 ICMP Configuration

Configuration for ICMP session tracking. Since there is no target based binding, there should be only one occurance
of the ICMP configuration.

△! NOTE
ICMP is currently untested, in minimal code form and is NOT ready for use in production networks. It is not
turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

Option Description
timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, and

the maximum is ”86400” (approximately 1 day).

Example Configurations

1. This example configuration emulates the default behaviorof flow and Stream4 (with UDP support enabled). It
is the default configuration in snort.conf.

preprocessor stream5_global: max_tcp 8192, track_tcp yes , \
track_udp yes, track_icmp no \

preprocessor stream5_tcp: policy first, use_static_foot print_sizes
preprocessor stream5_udp: ignore_any_rules

2. This configuration maps two network segments to differentOS policies, one for Windows and one for Linux,
with all other traffic going to the default policy of Solaris.

preprocessor stream5_global: track_tcp yes
preprocessor stream5_tcp: bind_to 192.168.1.0/24, polic y windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy li nux
preprocessor stream5_tcp: policy solaris

Alerts

Stream5 uses generator ID 129. It is capable of alerting on 8 (eight) anomalies, all of which relate to TCP anomalies.
There are no anomalies detected relating to UDP or ICMP.

The list of SIDs is as follows:

38

1. SYN on established session

2. Data on SYN packet

3. Data sent on stream not accepting data

4. TCP Timestamp is outside of PAWS window

5. Bad segment, overlap adjusted size less than/equal 0

6. Window size (after scaling) larger than policy allows

7. Limit on number of overlapping TCP packets reached

8. Data after Reset packet

2.1.3 sfPortscan

The sfPortscan module, developed by Sourcefire, is designedto detect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker determines what types of network protocols or services a host
supports. This is the traditional place where a portscan takes place. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported by thetarget; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its intended target, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the nature oflegitimate network communications, negative responses
from hosts are rare, and rarer still are multiple negative responses within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negativeresponses.

One of the most common portscanning tools in use today is Nmap. Nmap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to be able to detect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types of Nmap scans:

• TCP Portscan

• UDP Portscan

• IP Portscan

These alerts are for one→one portscans, which are the traditional types of scans; onehost scans multiple ports on
another host. Most of the port queries will be negative, since most hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy portscans:

• TCP Decoy Portscan

• UDP Decoy Portscan

• IP Decoy Portscan

Decoy portscans are much like the Nmap portscans described above, only the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactic helps hide the true identity of the attacker.

sfPortscan alerts for the following types of distributed portscans:

• TCP Distributed Portscan

• UDP Distributed Portscan

• IP Distributed Portscan

39

These are many→one portscans. Distributed portscans occur when multiple hosts query one host for open services.
This is used to evade an IDS and obfuscate command and controlhosts.

△! NOTE
Negative queries will be distributed among scanning hosts,so we track this type of scan through the scanned
host.

sfPortscan alerts for the following types of portsweeps:

• TCP Portsweep

• UDP Portsweep

• IP Portsweep

• ICMP Portsweep

These alerts are for one→many portsweeps. One host scans a single port on multiple hosts. This usually occurs when
a new exploit comes out and the attacker is looking for a specific service.

△! NOTE
The characteristics of a portsweep scan may not result in many negative responses. For example, if an attacker
portsweeps a web farm for port 80, we will most likely not see many negative responses.

sfPortscan alerts on the following filtered portscans and portsweeps:

• TCP Filtered Portscan

• UDP Filtered Portscan

• IP Filtered Portscan

• TCP Filtered Decoy Portscan

• UDP Filtered Decoy Portscan

• IP Filtered Decoy Portscan

• TCP Filtered Portsweep

• UDP Filtered Portsweep

• IP Filtered Portsweep

• ICMP Filtered Portsweep

• TCP Filtered Distributed Portscan

• UDP Filtered Distributed Portscan

• IP Filtered Distributed Portscan

“Filtered” alerts indicate that there were no network errors (ICMP unreachables or TCP RSTs) or responses on closed
ports have been suppressed. It’s also a good indicator of whether the alert is just a very active legitimate host. Active
hosts, such as NATs, can trigger these alerts because they can send out many connection attempts within a very small
amount of time. A filtered alert may go off before responses from the remote hosts are received.

sfPortscan only generates one alert for each host pair in question during the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any open ports that were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert has been triggered. Open port events are not individual alerts, but
tags based on the orginal scan alert.

40

sfPortscan Configuration

Use of the Stream5 preprocessor is required for sfPortscan.Stream gives portscan direction in the case of connection-
less protocols like ICMP and UDP. You should enable the Stream preprocessor in yoursnort.conf , as described in
Section 2.1.2.

The parameters you can use to configure the portscan module are:

1. proto <protocol>

Available options:

• TCP

• UDP

• IGMP

• ip proto

• all

2. scantype <scan type>

Available options:

• portscan

• portsweep

• decoy portscan

• distributed portscan

• all

3. senselevel<level>

Available options:

• low - “Low” alerts are only generated on error packets sent from the target host, and because of the nature
of error responses, this setting should see very few false postives. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responses. This setting is based on a static time window of
60 seconds, afterwhich this window is reset.

• medium - “Medium” alerts track connection counts, and so will generate filtered scan alerts. This setting
may false positive on active hosts (NATs, proxies, DNS caches, etc), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

• high - “High” alerts continuously track hosts on a network using atime window to evaluate portscan
statistics for that host. A ”High” setting will catch some slow scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitely will require the user to tune sfPortscan.

4. watch ip <ip1|ip2/cidr[[port |port2-port3]] >

Defines which IPs, networks, and specific ports on those hoststo watch. The list is a comma separated list of
IP addresses, IP address using CIDR notation. Optionally, ports are specified after the IP address/CIDR using a
space and can be either a single port or a range denoted by a dash. IPs or networks not falling into this range are
ignored if this option is used.

5. ignore scanners<ip1|ip2/cidr[[port |port2-port3]] >

Ignores the source of scan alerts. The parameter is the same format as that ofwatch ip .

6. ignore scanned<ip1|ip2/cidr[[port |port2-port3]] >

Ignores the destination of scan alerts. The parameter is thesame format as that ofwatch ip .

7. logfile<file>

This option will output portscan events to the file specified.If file does not contain a leading slash, this file
will be placed in the Snort config dir.

41

8. include midstream

This option will include sessions picked up in midstream by Stream4 or Stream5. This can lead to false alerts,
especially under heavy load with dropped packets; which is why the option is off by default.

9. detectack scansThis option will include sessions picked up in midstream by the stream module, which is
necessary to detect ACK scans. However, this can lead to false alerts, especially under heavy load with dropped
packets; which is why the option is off by default.

Format

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distrib uted_portscan|all>\
sense_level <low|medium|high> watch_ip <IP or IP/CIDR> ig nore_scanners <IP list>\
ignore_scanned <IP list> logfile <path and filename>

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan: proto { all } \

scan_type { all } \
sense_level { low }

Figure 2.6: sfPortscan Preprocessor Configuration

sfPortscan Alert Output

Unified Output In order to get all the portscan information logged with the alert, snort generates a pseudo-packet
and uses the payload portion to store the additional portscan information of priority count, connection count, IP count,
port count, IP range, and port range. The characteristics ofthe packet are:

Src/Dst MAC Addr == MACDAD
IP Protocol == 255
IP TTL == 0

Other than that, the packet looks like the IP portion of the packet that caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload size ofthe packet are equal to the length of the additional
portscan information that is logged. The size tends to be around 100 - 200 bytes.

Open port alerts differ from the other portscan alerts, because open port alerts utilize the tagged packet output system.
This means that if an output system that doesn’t print taggedpackets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload and contains the port that is open.

The sfPortscan alert output was designed to work with unifiedpacket logging, so it is possible to extend favorite Snort
GUIs to display portscan alerts and the additional information in the IP payload using the above packet characteristics.

Log File Output Log file output is displayed in the following format, and explained further below:

Time: 09/08-15:07:31.603880
event_id: 2
192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Po rtscan
Priority Count: 0
Connection Count: 200
IP Count: 2
Scanner IP Range: 192.168.169.3:192.168.169.4
Port/Proto Count: 200
Port/Proto Range: 20:47557

42

If there are open ports on the target, one or more additional tagged packet(s) will be appended:

Time: 09/08-15:07:31.603881
event_ref: 2
192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Event id/Event ref

These fields are used to link an alert with the correspondingOpen Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). The higher the priority count, the more
bad responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src or dst). This is accurate for
connection-based protocols, and is more of an estimate for others. Whether or not a portscan was filtered is
determined here. High connection count and low priority count would indicate filtered (no response received
from target).

4. IP Count

IP Count keeps track of the last IP to contact a host, and increments the count if the next IP is different. For
one-to-one scans, this is a low number. For active hosts thisnumber will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portsweep (one-to-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and increments this number when that changes. We use this
count (along with IP Count) to determine the difference between one-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tuning the detection engine for your network(s). Here are some
tuning tips:

1. Use the watchip, ignore scanners, and ignorescanned options.

It’s important to correctly set these options. Thewatch ip option is easy to understand. The analyst should set
this option to the list of Cidr blocks and IPs that they want towatch. If nowatch ip is defined, sfPortscan will
watch all network traffic.

The ignore scanners and ignore scanned options come into play in weeding out legitimate hosts that are
very active on your network. Some of the most common examplesare NAT IPs, DNS cache servers, syslog
servers, and nfs servers. sfPortscan may not generate falsepositives for these types of hosts, but be aware when
first tuning sfPortscan for these IPs. Depending on the type of alert that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweep events, then add it to theignore scanners option.
If the host is generating portscan alerts (and is the host that is being scanned), add it to theignore scanned
option.

2. Filtered scan alerts are much more prone to false positives.

When determining false positives, the alert type is very important. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be much more suspicious of filtered portscans. Many times
this just indicates that a host was very active during the time period in question. If the host continually generates
these types of alerts, add it to theignore scanners list or use a lower sensitivity level.

43

3. Make use of the Priority Count, Connection Count, IP Count, Port Count, IP Range, and Port Range to
determine false positives.

The portscan alert details are vital in determining the scope of a portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis in assigning a scope level and confidence level, but
for now the user must manually do this. The easiest way to determine false positives is through simple ratio
estimations. The following is a list of ratios to estimate and the associated values that indicate a legimite scan
and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connections per IP. For portscans,
this ratio should be high, the higher the better. For portsweeps, this ratio should be low.

Port Count / IP Count: This ratio indicates an estimated average of ports connected to per IP. For portscans, this
ratio should be high and indicates that the scanned host’s ports were connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning host connected to few ports but on many hosts.

Connection Count / Port Count: This ratio indicates an estimated average of connections per port. For
portscans, this ratio should be low. This indicates that each connection was to a different port. For portsweeps,
this ratio should be high. This indicates that there were many connections to the same port.

The reason thatPriority Count is not included, is because the priority count is included inthe connection
count and the above comparisons take that into consideration. The Priority Count play an important role in
tuning because the higher the priority count the more likelyit is a real portscan or portsweep (unless the host is
firewalled).

4. If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analyst doesn’t have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sensitivity level, but it’s also important that the portscan detection
engine generate alerts that the analyst will find informative. The low sensitivity level only generates alerts based
on error responses. These responses indicate a portscan andthe alerts generated by the low sensitivity level are
highly accurate and require the least tuning. The low sensitivity level does not catch filtered scans; since these
are more prone to false positives.

2.1.4 RPC Decode

The rpcdecode preprocessor normalizes RPC multiple fragmented records into a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. If stream5 is enabled, it will only process client-side traffic. By
default, it runs against traffic on ports 111 and 32771.

Table 2.3: RPC Decoder Options

Option Description
alert fragments Alert on any fragmented RPC record.
no alert multiple requests Don’t alert when there are multiple records in one packet.
no alert large fragments Don’t alert when the sum of fragmented records exceeds one packet.
no alert incomplete Don’t alert when a single fragment record exceeds the size ofone packet.

Format

preprocessor rpc_decode: <ports> [alert_fragments] \
[no_alert_multiple_requests] [no_alert_large_fragmen ts] \
[no_alert_incomplete]

2.1.5 Performance Monitor

This preprocessor measures Snort’s real-time and theoretical maximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, either “console” which prints statistics to the console window or

44

“file” with a file name, where statistics get printed to the specified file name. By default, Snort’s real-time statistics
are processed. This includes:

• Time Stamp

• Drop Rate

• Mbits/Sec (wire) [duplicated below for easy comparison with other rates]

• Alerts/Sec

• K-Pkts/Sec (wire) [duplicated below for easy comparison with other rates]

• Avg Bytes/Pkt (wire) [duplicated below for easy comparisonwith other rates]

• Pat-Matched [percent of data received that Snort processesin pattern matching]

• Syns/Sec

• SynAcks/Sec

• New Sessions Cached/Sec

• Sessions Del fr Cache/Sec

• Current Cached Sessions

• Max Cached Sessions

• Stream Flushes/Sec

• Stream Session Cache Faults

• Stream Session Cache Timeouts

• New Frag Trackers/Sec

• Frag-Completes/Sec

• Frag-Inserts/Sec

• Frag-Deletes/Sec

• Frag-Auto Deletes/Sec [memory DoS protection]

• Frag-Flushes/Sec

• Frag-Current [number of current Frag Trackers]

• Frag-Max [max number of Frag Trackers at any time]

• Frag-Timeouts

• Frag-Faults

• Number of CPUs [*** Only if compiled with LINUXSMP ***, the next three appear for each CPU]

• CPU usage (user)

• CPU usage (sys)

• CPU usage (Idle)

• Mbits/Sec (wire) [average mbits of total traffic]

• Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]

• Mbits/Sec (ipreass) [average mbits Snort injects after IP reassembly]

45

• Mbits/Sec (tcprebuilt) [average mbits Snort injects afterTCP reassembly]

• Mbits/Sec (applayer) [average mbits seen by rules and protocol decoders]

• Avg Bytes/Pkt (wire)

• Avg Bytes/Pkt (ipfrag)

• Avg Bytes/Pkt (ipreass)

• Avg Bytes/Pkt (tcprebuilt)

• Avg Bytes/Pkt (applayer)

• K-Pkts/Sec (wire)

• K-Pkts/Sec (ipfrag)

• K-Pkts/Sec (ipreass)

• K-Pkts/Sec (tcprebuilt)

• K-Pkts/Sec (applayer)

• Total Packets Received

• Total Packets Dropped (not processed)

• Total Packets Blocked (inline)

The following options can be used with the performance monitor:

• flow - Prints out statistics about the type of traffic and protocoldistributions that Snort is seeing. This option
can produce large amounts of output.

• events - Turns on event reporting. This prints out statistics as to the number of signatures that were matched
by the setwise pattern matcher (non-qualified events) and the number of those matches that were verified with
the signature flags (qualified events). This shows the user if there is a problem with the rule set that they are
running.

• max - Turns on the theoretical maximum performance that Snort calculates given the processor speed and current
performance. This is only valid for uniprocessor machines,since many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

• console - Prints statistics at the console.

• file - Prints statistics in a comma-delimited format to the file that is specified. Not all statistics are output to
this file. You may also usesnortfile which will output into your defined Snort log directory. Bothof these
directives can be overridden on the command line with the-Z or --perfmon-file options.

• pktcnt - Adjusts the number of packets to process before checking for the time sample. This boosts perfor-
mance, since checking the time sample reduces Snort’s performance. By default, this is 10000.

• time - Represents the number of seconds between intervals.

• accumulate or reset - Defines which type of drop statistics are kept by the operating system. By default,
reset is used.

• atexitonly - Dump stats for entire life of Snort.

Examples

preprocessor perfmonitor: time 30 events flow file stats.p rofile max \
console pktcnt 10000

preprocessor perfmonitor: time 300 file /var/tmp/snortst at pktcnt 10000

46

2.1.6 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applications. Given a data buffer, HTTP Inspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTP Inspect works on both client requests and server responses.

The current version of HTTP Inspect only handles stateless processing. This means that HTTP Inspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if packets are not reassembled. This works fine when there is
another module handling the reassembly, but there are limitations in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various reassembly modules.

HTTP Inspect has a very “rich” user configuration. Users can configure individual HTTP servers with a variety of
options, which should allow the user to emulate any type of web server. Within HTTP Inspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration options that determine the global functioning of HTTP Inspect. The
following example gives the generic global configuration format:

Format

preprocessor http_inspect: global \
iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert]

You can only have a single global configuration, you’ll get anerror if you try otherwise.

Configuration

1. iis unicode map <map filename > [codemap <integer >]

This is the globaliis unicode mapfile. Theiis unicode map is a required configuration parameter. The map
file can reside in the same directory assnort.conf or be specified via a fully-qualified path to the map file.

The iis unicode map file is a Unicode codepoint map which tells HTTP Inspect whichcodepage to use when
decoding Unicode characters. For US servers, the codemap isusually 1252.

A Microsoft US Unicode codepoint map is provided in the Snortsourceetc directory by default. It is called
unicode.map and should be used if no other codepoint map is available. A tool is supplied with Snort to generate
custom Unicodemaps--ms unicode generator.c , which is available athttp://www.snort.org/dl/contrib/ .

△! NOTE
Remember that this configuration is for the global IIS Unicode map, individual servers can reference their
own IIS Unicode map.

2. detect anomalous servers

This global configuration option enables generic HTTP server traffic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don’t turn this on if you don’t have a default server configuration that
encompasses all of the HTTP server ports that your users might access. In the future, we want to limit this to
specific networks so it’s more useful, but for right now, thisinspects all network traffic.

3. proxy alert

47

http://www.snort.org/dl/contrib/

This enables global alerting on HTTP server proxy usage. By configuring HTTP Inspect servers and enabling
allow proxy use , you will only receive proxy use alerts for web users that aren’t using the configured proxies
or are using a rogue proxy server.

Please note that if users aren’t required to configure web proxy use, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy environments. Blind firewall proxies don’t count.

Example Global Configuration

preprocessor http_inspect: global iis_unicode_map unico de.map 1252

Server Configuration

There are two types of server configurations: default and by IP address.

Default This configuration supplies the default server configuration for any server that is not individually configured.
Most of your web servers will most likely end up using the default configuration.

Example Default Configuration

preprocessor http_inspect_server: server default profil e all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server: server 10.1.1.1 profi le all ports { 80 }

Configuration by Multiple IP Addresses This format is very similar to “Configuration by IP Address”,the only
difference being that multiple IPs can be specified via a space separated list. There is a limit of 40 IP addresses or
CIDR notations perhttp inspect server line.

Example Multiple IP Configuration

preprocessor http_inspect_server: server { 10.1.1.1 10.2 .2.0/24 } profile all ports { 80 }

Server Configuration Options

Important: Some configuration options have an argument of ‘yes’ or ‘no’. This argument specifies whether the user
wants the configuration option to generate an HTTP Inspect alert or not. The ‘yes/no’ argument does not specify
whether the configuration option itself is on or off, only thealerting functionality. In other words, whether set to ‘yes’
or ’no’, HTTP normalization will still occur, and rules based on HTTP traffic will still trigger.

1. profile <all |apache |iis |iis5 0|iis4 0>

Users can configure HTTP Inspect by using pre-defined HTTP server profiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server, but are not required for proper operation.

There are five profiles available: all, apache, iis, iis50, and iis40.

48

1-A. all

Theall profile is meant to normalize the URI using most of the common tricks available. We alert on the
more serious forms of evasions. This is a great profile for detecting all types of attacks, regardless of the
HTTP server.profile all sets the configuration options described in Table 2.4.

Table 2.4: Options for the “all” Profile

Option Setting
serverflow depth 300
client flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
iis unicodemap codepoint map in the global configuration
ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
apache whitespace on, alert off
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints on, alert on
iis backslash on, alert off
iis delimiter on, alert off
webroot on, alert on
non strict URL parsing on
tab uri delimiter is set
max headerlength 0, header length not checked
max headers 0, number of headers not checked

1-B. apache

Theapache profile is used for Apache web servers. This differs from theiis profile by only accepting
UTF-8 standard Unicode encoding and not accepting backslashes as legitimate slashes, like IIS does.
Apache also accepts tabs as whitespace.profile apache sets the configuration options described in
Table 2.5.

Table 2.5: Options for theapache Profile

Option Setting
serverflow depth 300
client flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
apache whitespace on, alert on
utf 8 encoding on, alert off
non strict url parsing on
tab uri delimiter is set
max headerlength 0, header length not checked
max headers 0, number of headers not checked

1-C. iis

The iis profile mimics IIS servers. So that means we use IIS Unicode codemaps for each server, %u
encoding, bare-byte encoding, double decoding, backslashes, etc. profile iis sets the configuration

49

options described in Table 2.6.

Table 2.6: Options for theiis Profile

Option Setting

serverflow depth 300
client flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
iis unicodemap codepoint map in the global configuration
ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints on, alert on
iis backslash on, alert off
iis delimiter on, alert on
apache whitespace on, alert on
non strict URL parsing on
max headerlength 0, header length not checked
max headers 0, number of headers not checked

1-D. iis4 0, iis5 0

In IIS 4.0 and IIS 5.0, there was a double decoding vulnerability. These two profiles are identical toiis ,
except they will alert by default if a URL has a double encoding. Double decode is not supported in IIS
5.1 and beyond, so it’s disabled by default.

1-E. default, no profile The default options used by HTTP Inspect do not use a profile and are described
in Table 2.7.

Table 2.7: Default HTTP Inspect Options

Option Setting

port 80
serverflow depth 300
client flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on, alert off
utf 8 encoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
iis backslash on, alert off
apache whitespace on, alert off
iis delimiter on, alert off
non strict URL parsing on
max headerlength 0, header length not checked
max headers 0, number of headers not checked

50

Profiles must be specified as the first server option and cannotbe combined with any other options except:

• ports

• iis unicode map

• allow proxy use

• server flow depth

• client flow depth

• no alerts

• inspect uri only

• oversize dir length

• normalize headers

• normalize cookies

• max header length

• max headers

These options must be specified after theprofile option.

Example

preprocessor http_inspect_server: server 1.1.1.1 profil e all ports { 80 3128 }

2. ports {<port > [<port >< ... >]}

This is how the user configures which ports to decode on the HTTP server. However, HTTPS traffic is encrypted
and cannot be decoded with HTTP Inspect. To ignore HTTPS traffic, use the SSL preprocessor.

3. iis unicode map <map filename > codemap <integer >

The IIS Unicode map is generated by the program msunicodegenerator.c. This program is located on the
Snort.org web site athttp://www.snort.org/dl/contrib/ directory. Executing this program generates a
Unicode map for the system that it was run on. So, to get the specific Unicode mappings for an IIS web server,
you run this program on that server and use that Unicode map inthis configuration.

When using this option, the user needs to specify the file thatcontains the IIS Unicode map and also specify
the Unicode map to use. For US servers, this is usually 1252. But the msunicodegenerator program tells you
which codemap to use for you server; it’s the ANSI code page. You can select the correct code page by looking
at the available code pages that the msunicodegenerator outputs.

4. server flow depth <integer >

This specifies the amount of server response payload to inspect. This option significantly increases IDS perfor-
mance because we are ignoring a large part of the network traffic (HTTP server response payloads). A small
percentage of Snort rules are targeted at this traffic and a small flow depth value may cause false negatives in
some of these rules. Most of these rules target either the HTTP header, or the content that is likely to be in the
first hundred or so bytes of non-header data. Headers are usually under 300 bytes long, but your mileage may
vary.

This value can be set from -1 to 1460. A value of -1 causes Snortto ignore all server side traffic for ports defined
in ports . Inversely, a value of 0 causes Snort to inspect all HTTP server payloads defined inports (note that
this will likely slow down IDS performance). Values above 0 tell Snort the number of bytes to inspect in the
first packet of the server response.

△! NOTE

server flow depth is the same as the oldflow depth option, which will be deprecated in a future release.

5. client flow depth <integer > This specifies the amount of raw client request payload to inspect. It is sim-
ilar to server flow depth (above), and has a default value of 300. It primarily eliminates Snort fro inspecting
larger HTTP Cookies that appear at the end of many client request Headers.

51

http://www.snort.org/dl/contrib/

6. ascii <yes |no>

The ascii decode option tells us whether to decode encoded ASCII chars, a.k.a %2f = /, %2e = ., etc. It is
normal to see ASCII encoding usage in URLs, so it is recommended that you disable HTTP Inspect alerting for
this option.

7. utf 8 <yes |no>

Theutf-8 decode option tells HTTP Inspect to decode standard UTF-8 Unicode sequences that are in the URI.
This abides by the Unicode standard and only uses % encoding.Apache uses this standard, so for any Apache
servers, make sure you have this option turned on. As for alerting, you may be interested in knowing when you
have a UTF-8 encoded URI, but this will be prone to false positives as legitimate web clients use this type of
encoding. Whenutf 8 is enabled, ASCII decoding is also enabled to enforce correct functioning.

8. u encode <yes |no>

This option emulates the IIS %u encoding scheme. How the %u encoding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 characters, like %uxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value can most definitely be ASCII. An ASCII character is
encoded like %u002f = /, %u002e = ., etc. If no iisunicodemap is specified before or after this option, the
default codemap is used.

You should alert on %u encodings, because we are not aware of any legitimate clients that use this encoding. So
it is most likely someone trying to be covert.

9. bare byte <yes |no>

Bare byte encoding is an IIS trick that uses non-ASCII characters as valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values haveto be encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret non-standard encodings correctly.

The alert on this decoding should be enabled, because there are no legitimate clients that encode UTF-8 this
way since it is non-standard.

10. base36 <yes |no>

This is an option to decode base36 encoded chars. This optionis based on of info fromhttp://www.yk.rim.or.jp/˜shikap/patch

If %u encoding is enabled, this option will not work. You haveto use thebase36 option with theutf 8 option.
Don’t use the %u option, because base36 won’t work. Whenbase36 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

11. iis unicode <yes |no>

The iis unicode option turns on the Unicode codepoint mapping. If there is noiis unicodemap option spec-
ified with the server config,iis unicode uses the default codemap. Theiis unicode option handles the
mapping of non-ASCII codepoints that the IIS server acceptsand decodes normal UTF-8 requests.

You should alert on theiis unicode option , because it is seen mainly in attacks and evasion attempts. When
iis unicode is enabled, ASCII and UTF-8 decoding are also enabled to enforce correct decoding. To alert on
UTF-8 decoding, you must enable also enableutf 8 yes .

12. double decode <yes |no> Thedouble decode option is once again IIS-specific and emulates IIS function-
ality. How this works is that IIS does two passes through the request URI, doing decodes in each one. In the
first pass, it seems that all types of iis encoding is done: utf-8 unicode, ascii, bare byte, and %u. In the second
pass, the following encodings are done: ascii, bare byte, and %u. We leave out utf-8 because I think how this
works is that the % encoded utf-8 is decoded to the Unicode byte in the first pass, and then UTF-8 is decoded in
the second stage. Anyway, this is really complex and adds tons of different encodings for one character. When
double decode is enabled, so ASCII is also enabled to enforce correct decoding.

13. non rfc char {<byte > [<byte ... >]}

This option lets users receive an alert if certain non-RFC chars are used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we can alert on that. Please use this option with care,
because you could configure it to say, alert on all ‘/’ or something like that. It’s flexible, so be careful.

52

http://www.yk.rim.or.jp/~shikap/patch/spp_http_decode.patch

14. multi slash <yes |no>

This option normalizes multiple slashes in a row, so something like: “foo/////////bar” get normalized to “foo/bar.”

If you want an alert when multiple slashes are seen, then configure with ayes ; otherwise, useno.

15. iis backslash <yes |no>

Normalizes backslashes to slashes. This is again an IIS emulation. So a request URI of “/foo\bar” gets normal-
ized to “/foo/bar.”

16. directory <yes |no>

This option normalizes directory traversals and self-referential directories.

The directory:

/foo/fake_dir/../bar

gets normalized to:

/foo/bar

The directory:

/foo/./bar

gets normalized to:

/foo/bar

If you want to configure an alert, specifyyes , otherwise, specifyno. This alert may give false positives, since
some web sites refer to files using directory traversals.

17. apache whitespace <yes |no>

This option deals with the non-RFC standard of using tab for aspace delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alerts onthis option may be interesting, but may also be
false positive prone.

18. iis delimiter <yes |no>

This started out being IIS-specific, but Apache takes this non-standard delimiter was well. Since this is common,
we always take this as standard since the most popular web servers accept it. But you can still get an alert on
this option.

19. chunk length <non-zero positive integer >

This option is an anomaly detector for abnormally large chunk sizes. This picks up the Apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses chunk encoding.

20. no pipeline req

This option turns HTTP pipeline decoding off, and is a performance enhancement if needed. By default, pipeline
requests are inspected for attacks, but when this option is enabled, pipeline requests are not decoded and ana-
lyzed per HTTP protocol field. It is only inspected with the generic pattern matching.

21. non strict

This option turns on non-strict URI parsing for the broken way in which Apache servers will decode a URI.
Only use this option on servers that will accept URIs like this: ”get /index.html alsjdfk alsj lj aj la jsj s\n”. The
non strict option assumes the URI is between the first and second space even if there is no valid HTTP identifier
after the second space.

22. allow proxy use

By specifying this keyword, the user is allowing proxy use onthis server. This means that no alert will be
generated if theproxy alert global keyword has been used. If the proxyalert keyword is not enabled, then
this option does nothing. Theallow proxy use keyword is just a way to suppress unauthorized proxy use for
an authorized server.

53

23. no alerts

This option turns off all alerts that are generated by the HTTP Inspect preprocessor module. This has no effect
on HTTP rules in the rule set. No argument is specified.

24. oversize dir length <non-zero positive integer >

This option takes a non-zero positive integer as an argument. The argument specifies the max char directory
length for URL directory. If a url directory is larger than this argument size, an alert is generated. A good
argument value is 300 characters. This should limit the alerts to IDS evasion type attacks, like whisker -i 4.

25. inspect uri only

This is a performance optimization. When enabled, only the URI portion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the web attacks, you’ll catch most of the attacks. So if
you need extra performance, enable this optimization. It’simportant to note that if this option is used without
anyuricontent rules, then no inspection will take place. This is obvious since the URI is only inspected with
uricontent rules, and if there are none available, then there is nothingto inspect.

For example, if we have the following rule set:

alert tcp any any -> any 80 (msg:"content"; content: "foo";)

and the we inspect the following URI:

get /foo.htm http/1.0\r\n\r\n

No alert will be generated wheninspect uri only is enabled. Theinspect uri only configuration turns off
all forms of detection excepturicontent inspection.

26. max header length <positive integer up to 65535 > This option takes an integer as an argument. The
integer is the maximum length allowed for an HTTP client request header field. Requests that exceed this
length will cause a ”Long Header” alert. This alert is off by default. To enable, specify an integer argument to
max headerlength of 1 to 65535. Specifying a value of 0 is treated as disabling the alert.

27. webroot <yes |no>

This option generates an alert when a directory traversal traverses past the web server root directory. This
generates much fewer false positives than the directory option, because it doesn’t alert on directory traversals
that stay within the web server directory structure. It onlyalerts when the directory traversals go past the web
server root directory, which is associated with certain webattacks.

28. tab uri delimiter

This option turns on the use of the tab character (0x09) as a delimiter for a URI. Apache accepts tab as a
delimiter; IIS does not. For IIS, a tab in the URI should be treated as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space character (0x20) precedes it. No argument is specified.

29. normalize headers This option turns on normalization for HTTP Header Fields, not including Cookies (using
the same configuration parameters as the URI normalization (ie, multi-slash, directory, etc.). It is useful for
normalizing Referrer URIs that may appear in the HTTP Header.

30. normalize cookies This option turns on normalization for HTTP Cookie Fields (using the same configuration
parameters as the URI normalization (ie, multi-slash, directory, etc.). It is useful for normalizing data in HTTP
Cookies that may be encoded.

31. max headers <positive integer up to 1024 > This option takes an integer as an argument. The integer
is the maximum number of HTTP client request header fields. Requests that contain more HTTP Headers than
this value will cause a ”Max Header” alert. The alert is off bydefault. To enable, specify an integer argumnet to
max headers of 1 to 1024. Specifying a value of 0 is treated as disabling the alert.

54

Examples

preprocessor http_inspect_server: server 10.1.1.1 \
ports { 80 3128 8080 } \
server_flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { 0x00 } \
server_flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server: server default \
profile all \
ports { 80 8080 }

2.1.7 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applications. Given a data buffer, SMTP will decode the buffer
and find SMTP commands and responses. It will also mark the command, data header data body sections, and TLS
data.

SMTP handles stateless and stateful processing. It saves state between individual packets. However maintaining
correct state is dependent on the reassembly of the client side of the stream (ie, a loss of coherent stream data results
in a loss of state).

Configuration

SMTP has the usual configuration items, such asport and inspection type . Also, SMTP command lines can be
normalized to remove extraneous spaces. TLS-encrypted traffic can be ignored, which improves performance. In
addition, regular mail data can be ignored for an additionalperformance boost. Since so few (none in the current snort
rule set) exploits are against mail data, this is relativelysafe to do and can improve the performance of data inspection.

The configuration options are described below:

1. ports { <port> [<port>] ... }

This specifies on what ports to check for SMTP data. Typically, this will include 25 and possibly 465, for
encrypted SMTP.

55

2. inspection type <stateful | stateless>

Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for morethan one space character after a command. Space
characters are defined as space (ASCII 0x20) or tab (ASCII 0x09).

all checks all commands

none turns off normalization for all commands.

cmds just checks commands listed with thenormalize cmds parameter.

4. ignore data

Ignore data section of mail (except for mail headers) when processing rules.

5. ignore tls data

Ignore TLS-encrypted data when processing rules.

6. max command line len <int>

Alert if an SMTP command line is longer than this value. Absence of this option or a ”0” means never alert on
command line length. RFC 2821 recommends 512 as a maximum command line length.

7. max header line len <int>

Alert if an SMTP DATA header line is longer than this value. Absence of this option or a ”0” means never alert
on data header line length. RFC 2821 recommends 1024 as a maximum data header line length.

8. max response line len <int>

Alert if an SMTP response line is longer than this value. Absence of this option or a ”0” means never alert on
response line length. RFC 2821 recommends 512 as a maximum response line length.

9. alt max command line len <int> { <cmd> [<cmd>] }

Overridesmax command line len for specific commands.

10. no alerts

Turn off all alerts for this preprocessor.

11. invalid cmds { <Space-delimited list of commands> }

Alert if this command is sent from client side. Default is an empty list.

12. valid cmds { <Space-delimited list of commands> }

List of valid commands. We do not alert on commands in this list. Default is an empty list, but preprocessor
has this list hard-coded:{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN
EVFY EXPN} { HELO HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEU
} { STARTTLS TICK TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE } { XADR XAUTH
XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR}

13. alert unknown cmds

Alert if we don’t recognize command. Default is off.

14. normalize cmds { <Space-delimited list of commands> }

Normalize this list of commands Default is{ RCPT VRFY EXPN}.

15. xlink2state { enable | disable [drop] }

Enable/disable xlink2state alert. Drop if alerted. Default is enable .

16. print cmds

List all commands understood by the preprocessor. This not normally printed out with the configuration because
it can print so much data.

56

Example

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
ignore_data \
ignore_tls_data \
max_command_line_len 512 \
max_header_line_len 1024 \
max_response_line_len 512 \
no_alerts \
alt_max_command_line_len 300 { RCPT } \
invalid_cmds { } \
valid_cmds { } \
xlink2state { disable } \
print_cmds

Default

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }

Note

RCPT TO: andMAIL FROM: are SMTP commands. For the preprocessor configuration, theyare referred to as RCPT
and MAIL, respectively. Within the code, the preprocessor actually maps RCPT and MAIL to the correct command
name.

2.1.8 FTP/Telnet Preprocessor

FTP/Telnet is an improvement to the Telnet decoder and provides stateful inspection capability for both FTP and
Telnet data streams. FTP/Telnet will decode the stream, identifying FTP commands and responses and Telnet escape
sequences and normalize the fields. FTP/Telnet works on bothclient requests and server responses.

FTP/Telnet has the capability to handle stateless processing, meaning it only looks for information on a packet-by-
packet basis.

The default is to run FTP/Telent in stateful inspection mode, meaning it looks for information and handles reassembled
data correctly.

FTP/Telnet has a very “rich” user configuration, similar to that of HTTP Inspect (See 2.1.6). Users can configure
individual FTP servers and clients with a variety of options, which should allow the user to emulate any type of FTP
server or FTP Client. Within FTP/Telnet, there are four areas of configuration: Global, Telnet, FTP Client, and FTP
Server.

57

△! NOTE
Some configuration options have an argument ofyes or no. This argument specifies whether the user wants
the configuration option to generate a ftptelnet alert or not. The presence of the option indicates the option
itself is on, while theyes/no argument applies to the alerting functionality associatedwith that option.

Global Configuration

The global configuration deals with configuration options that determine the global functioning of FTP/Telnet. The
following example gives the generic global configuration format:

Format

preprocessor ftp_telnet: global \
inspection_type stateful \
encrypted_traffic yes \
check_encrypted

You can only have a single global configuration, you’ll get anerror if you try otherwise. The FTP/Telnet global
configuration must appear before the other three areas of configuration.

Configuration

1. inspection type

This indicates whether to operate in stateful or stateless mode.

2. encrypted traffic <yes|no >

This option enables detection and alerting on encrypted Telnet and FTP command channels.

△! NOTE
Wheninspection type is in stateless mode, checks for encrypted traffic will occuron every packet, whereas
in stateful mode, a particular session will be noted as encrypted and not inspected any further.

3. check encrypted

Instructs the the preprocessor to continue to check an encrypted session for a subsequent command to cease
encryption.

Example Global Configuration

preprocessor ftp_telnet: global inspection_type statefu l encrypted_traffic no

Telnet Configuration

The telnet configuration deals with configuration options that determine the functioning of the Telnet portion of the
preprocessor. The following example gives the generic telnet configuration format:

58

Format

preprocessor ftp_telnet_protocol: telnet \
ports { 23 } \
normalize \
ayt_attack_thresh 6 \
detect_anomalies

There should only be a single telnet configuration, and subsequent instances will override previously set values.

Configuration

1. ports {<port > [<port >< ... >]}

This is how the user configures which ports to decode as telnettraffic. SSH tunnels cannot be decoded, so adding
port 22 will only yield false positives. Typically port 23 will be included.

2. normalize

This option tells the preprocessor to normalize the telnet traffic by eliminating the telnet escape sequences. It
functions similarly to its predecessor, the telnetdecode preprocessor. Rules written with ’raw’ content options
will ignore the normailzed buffer that is created when this option is in use.

3. ayt attack thresh < number >

This option causes the preprocessor to alert when the numberof consecutive telnet Are You There (AYT)
commands reaches the number specified. It is only applicablewhen the mode is stateful.

4. detect anomalies

In order to support certain options, Telnet supports subnegotiation. Per the Telnet RFC, subnegotiation begins
with SB (subnegotiation begin) and must end with an SE (subnegotiation end). However, certain implementa-
tions of Telnet servers will ignore the SB without a cooresponding SE. This is anomalous behavior which could
be an evasion case. Being that FTP uses the Telnet protocol onthe control connection, it is also susceptible to
this behavior. Thedetect anomalies option enables alerting on Telnet SB without the corresponding SE.

Example Telnet Configuration

preprocessor ftp_telnet_protocol: telnet ports { 23 } norm alize ayt_attack_thresh 6

FTP Server Configuration

There are two types of FTP server configurations: default andby IP address.

Default This configuration supplies the default server configuration for any FTP server that is not individually con-
figured. Most of your FTP servers will most likely end up usingthe default configuration.

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: ftp server default por ts { 21 }

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs
can be configured.

59

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: ftp server 10.1.1.1 ports { 21 } ftp_cmds { XPWD XCWD }

FTP Server Configuration Options

1. ports {<port > [<port >< ... >]}

This is how the user configures which ports to decode as FTP command channel traffic. Typically port 21 will
be included.

2. print cmds

During initialization, this option causes the preprocessor to print the configuration for each of the FTP commands
for this server.

3. ftp cmds {cmd[cmd]}

The preprocessor is configured to alert when it sees an FTP command that is not allowed by the server.

This option specifies a list of additional commands allowed by this server, outside of the default FTP command
set as specified in RFC 959. This may be used to allow the use of the ’X’ commands identified in RFC 775, as
well as any additional commands as needed.

For example:

ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

4. def max param len <number >

This specifies the default maximum allowed parameter lengthfor an FTP command. It can be used as a basic
buffer overflow detection.

5. alt max param len <number > {cmd[cmd]}

This specifies the maximum allowed parameter length for the specified FTP command(s). It can be used as a
more specific buffer overflow detection. For example the USERcommand – usernames may be no longer than
16 bytes, so the appropriate configuration would be:

alt_max_param_len 16 { USER }

6. chk str fmt {cmd[cmd]}

This option causes a check for string format attacks in the specified commands.

7. cmd validity cmd < fmt >

This option specifies the valid format for parameters of a given command.

fmt must be enclosed in<>’s and may contain the following:

Value Description

int Parameter must be an integer
number Parameter must be an integer between 1 and 255
char chars Parameter must be a single character, one ofchars
date datefmt Parameter follows format specified, where:

Number
C Character
[] optional format enclosed
| OR
{} choice of options
other literal (ie, . + -)

string Parameter is a string (effectively unrestricted)
hostport Parameter must be a host/port specified, per RFC 959
, | One of choices enclosed within, separated by|
[] Optional value enclosed within

60

Examples of the cmdvalidity option are shown below. These examples are the default checks, per RFC 959 and
others performed by the preprocessor.

cmd_validity MODE <char SBC>
cmd_validity STRU <char FRP>
cmd_validity ALLO < int [char R int] >
cmd_validity TYPE < { char AE [char NTC] | char I | char L [numbe r] } >
cmd_validity PORT < host_port >

A cmd validity line can be used to override these defaults and/or add a check for other commands.

This allows additional modes, including mode Z which allow s for
zip-style compression.
cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.
cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] stri ng >

MDTM is an off case that is worth discussing.

While not part of an established standard, certain FTP servers accept MDTM commands that set the modification
time on a file. The most common among servers that do, accept a format using YYYYMMDDHHmmss[.uuu].
Some others accept a format using YYYYMMDDHHmmss[+—-]TZ format. The example above is for the first
case (time format as specified in http://www.ietf.org/internet-drafts/draft-ietf-ftpext-mlst-16.txt)

To check validity for a server that uses the TZ format, use thefollowing:

cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-}n[n]]] str ing >

8. telnet cmds <yes |no>

This option turns on detection and alerting when telnet escape sequences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as an evasion attempt on an FTP command channel.

9. data chan

This option causes the rest of snort (rules, other preprocessors) to ignore FTP data channel connections. Using
this option means thatNO INSPECTION other than TCP state will be performed on FTP data transfers.It
can be used to improve performance, especially with large file transfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that this option not be used.

Use of the ”datachan” option is deprecated in favor of the ”ignoredatachan” option. ”datachan” will be
removed in a future release.

10. ignore data chan <yes |no>

This option causes the rest of Snort (rules, other preprocessors) to ignore FTP data channel connections. Setting
this option to ”yes” means thatNO INSPECTION other than TCP state will be performed on FTP data transfers.
It can be used to improve performance, especially with largefile transfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that this option not be used.

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client configurations has two types: default, and by IP address.

Default This configuration supplies the default client configuration for any FTP client that is not individually con-
figured. Most of your FTP clients will most likely end up usingthe default configuration.

61

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: ftp client default bou nce no max_resp_len 200

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs
can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: ftp client 10.1.1.1 bo unce yes max_resp_len 500

FTP Client Configuration Options

1. max resp len <number >

This specifies the maximum allowed response length to an FTP command accepted by the client. It can be used
as a basic buffer overflow detection.

2. bounce <yes|no >

This option turns on detection and alerting of FTP bounce attacks. An FTP bounce attack occurs when the FTP
PORT command is issued and the specified host does not match the host of the client.

3. bounce to < CIDR,[port |portlow,porthi] >

When the bounce option is turned on, this allows the PORT command to use the IP address (in CIDR format) and
port (or inclusive port range) without generating an alert.It can be used to deal with proxied FTP connections
where the FTP data channel is different from the client.

A few examples:

• Allow bounces to 192.162.1.1 port 20020 – ie, the use ofPORT 192,168,1,1,78,52 .

bounce_to { 192.168.1.1,20020 }

• Allow bounces to 192.162.1.1 ports 20020 through 20040 – ie,the use ofPORT 192,168,1,1,78,xx ,
where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }

• Allow bounces to 192.162.1.1 port 20020 and 192.168.1.2 port 20030.

bounce_to { 192.168.1.1,20020 192.168.1.2,20030}

4. telnet cmds <yes|no >

This option turns on detection and alerting when telnet escape sequences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as an evasion attempt on an FTP command channel.

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: global \
encrypted_traffic yes \
inspection_type stateful

preprocessor ftp_telnet_protocol: telnet \
normalize \
ayt_attack_thresh 200

This is consistent with the FTP rules as of 18 Sept 2004.
Set CWD to allow parameter length of 200

62

MODE has an additional mode of Z (compressed)
Check for string formats in USER & PASS commands
Check MDTM commands that set modification time on the file.
preprocessor ftp_telnet_protocol: ftp server default \

def_max_param_len 100 \
alt_max_param_len 200 { CWD } \
cmd_validity MODE < char ASBCZ > \
cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] stri ng > \
chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \
telnet_cmds yes \
ignore_data_chan yes

preprocessor ftp_telnet_protocol: ftp client default \
max_resp_len 256 \
bounce yes \
telnet_cmds yes

2.1.9 SSH

The SSH preprocessor detects the following exploits: Gobbles, CRC 32, Secure CRT, and the Protocol Mismatch
exploit.

Both Gobbles and CRC 32 attacks occur after the key exchange,and are therefore encrypted. Both attacks involve
sending a large payload (20kb+) to the server immediately after the authentication challenge. To detect the attacks, the
SSH preprocessor counts the number of bytes transmitted to the server. If those bytes exceed a predefined limit within
a predefined number of packets, an alert is generated. Since Gobbles only effects SSHv2 and CRC 32 only effects
SSHv1, the SSH version string exchange is used to distinguish the attacks.

The Secure CRT and protocol mismatch exploits are observable before the key exchange.

Configuration

By default, all alerts are enabled and the preprocessor checks traffic on port 22.

The available configuration options are described below.

1. server ports {<port > [<port >< ... >]}

This option specifies which ports the SSH preprocessor should inspect traffic to.

2. max encrypted packets < number >

Specifies the number of unanswered packets to allow before alerting on Gobbles or CRC 32. In Gobbles or CRC
32, several large packets will be transmitted immediately after the authentication challenge. maxencryptedpackets
should be used in combination with maxclient bytes.

3. max client bytes < number >

The maximum number of bytes allowed to be transferred acrossmax encryptedpackets packets before alerting
on Gobbles or CRC 32.

4. autodetect

Attempt to automatically detect SSH.

5. disable gobbles

Disables checking for the Gobbles exploit.

6. disable ssh1crc32

Disables checking for the CRC 32 exploit.

63

7. disable srvoverflow

Disables checking for the Secure CRT exploit.

8. disable protomismatch

Disables checking for the Protocol Mismatch exploit.

9. disable badmsgdir

Disable alerts for traffic flowing the wrong direction. For instance, if the presumed server generates client traffic,
or if a client generates server traffic.

10. disable paysize

Disables alerts for invalid payload sizes.

11. disable recognition

Disable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After maxclient packets is reached, the preprocessor will stop pro-
cessing traffic for a given session. If Gobbles or CRC 32 falsepositive, try increasing the number of required client
bytes with maxclient bytes.

Examples/Default Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 byteswithin 20 encrypted packets for the Gobbles/CRC32
exploits.

preprocessor ssh: server_ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20

2.1.10 DCE/RPC

The dcerpc preprocessor detects and decodes SMB and DCE/RPCtraffic. It is primarily interested in DCE/RPC
requests, and only decodes SMB to get to the potential DCE/RPC requests carried by SMB.

Currently, the preprocessor only handles desegmentation (at SMB and TCP layers) and defragmentation of DCE/RPC.
Snort rules can be evaded by using both types of fragmentation. With the preprocessor enabled, the rules are given
reassembled DCE/RPC data to examine.

At the SMB layer, only segmentation using WriteAndX is currently reassembled. Other methods will be handled in
future versions of the preprocessor.

Autodetection of SMB is done by looking for ”\xFFSMB” at the start of the SMB data, as well as checking the NetBIOS
header (which is always present for SMB) for the type ”Session Message”.

Autodetection of DCE/RPC is not as reliable. Currently, twobytes are checked in the packet. Assuming that the data
is a DCE/RPC header, one byte is checked for DCE/RPC version 5and another for a DCE/RPC PDU type of Request.
If both match, the preprocessor proceeds with the assumption that it is looking at DCE/RPC data. If subsequent checks
are nonsensical, it ends processing.

Configuration

The proprocessor has several optional configuration options. They are described below:

• autodetect
In addition to configured ports, try to autodetect DCE/RPC sessions. Note that DCE/RPC can run on practically
any port in addition to the more common ports. This option is not configured by default.

64

• ports smb { <port > [< port> <...>] }
Ports that the preprocessor monitors for SMB traffic. Default are ports 139 and 445.

• ports dcerpc { <port > [< port> <...>] }
Ports that the preprocessor monitors for DCE/RPC over TCP traffic. Default is port 135.

• disable smb frag
Do not do SMB desegmentation. Unless you are experiencing severe performance issues, this option should not
be configured as SMB segmentation provides for an easy evasion opportunity. This option is not configured by
default.

• disable dcerpc frag
Do not do DCE/RPC defragmentation. Unless you are experiencing severe performance issues, this option
should not be configured as DCE/RPC fragmentation provides for an easy evasion opportunity. This option is
not configured by default.

• max frag size <number >
Maximum DCE/RPC fragment size to put in defragmentation buffer, in bytes. Default is 3000 bytes.

• memcap <number >
Maximum amount of memory available to the DCE/RPC preprocessor for desegmentation and defragmentation,
in kilobytes. Default is 100000 kilobytes.

• alert memcap
Alert if memcap is exceeded. This option is not configured by default.

• reassemble increment <number >
This option specifies how often the preprocessor should create a reassembled packet to send to the detection
engine with the data that’s been accrued in the segmentationand fragmentation reassembly buffers, before the
final desegmentation or defragmentation of the DCE/RPC request takes place. This will potentially catch an
attack earlier and is useful if in inline mode. Since the preprocessor looks at TCP reassembled packets (to avoid
TCP overlaps and segmentation evasions), the last packet ofan attack using DCE/RPC segmented/fragmented
evasion techniques may have already gone through before thepreprocessor looks at it, so looking at the data
early will likely catch the attack before all of the exploit data has gone through. Note, however, that in using
this option, Snort will potentially take a performance hit.Not recommended if Snort is running in passive
mode as it’s not really needed. The argument to the option specifies how often the preprocessor should create
a reassembled packet if there is data in the segmentation/fragmentation buffers. If not specified, this option is
disabled. A value of 0 will in effect disable this option as well.

Configuration Examples

In addition to defaults, autodetect SMB and DCE/RPC sessions on non-configured ports. Don’t do desegmentation on
SMB writes. Truncate DCE/RPC fragment if greater than 4000 bytes.

preprocessor dcerpc: \
autodetect \
disable_smb_frag \
max_frag_size 4000

In addition to defaults, don’t do DCE/RPC defragmentation.Set memory cap for desegmentation/defragmentation to
50,000 kilobytes. (Since no DCE/RPC defragmentation will be done the memory cap will only apply to desegmenta-
tion.)

preprocessor dcerpc: \
disable_dcerpc_frag \
memcap 50000

65

In addition to the defaults, detect on DCE/RPC (or TCP) ports135 and 2103 (overrides default). Set memory cap for
desegmentation/defragmentationto 200,000 kilobytes. Create a reassembly packet every time through the preprocessor
if there is data in the desegmentation/defragmentation buffers.

preprocessor dcerpc: \
ports dcerpc { 135 2103 } \
memcap 200000 \
reassemble_increment 1

Default Configuration

If no options are given to the preprocessor, the default configuration will look like:

preprocessor dcerpc: \
ports smb { 139 445 } \
ports dcerpc { 135 } \
max_frag_size 3000 \
memcap 100000 \
reassemble_increment 0

Preprocessor Events

There is currently only one alert, which is triggered when the preprocessor has reached thememcap limit for memory
allocation. The alert is gid 130, sid 1.

Note

At the current time, there is not much to do with the dcerpc preprocessor other than turn it on and let it reassemble
fragmented DCE/RPC packets.

2.1.11 DNS

The DNS preprocessor decodes DNS Responses and can detect the following exploits: DNS Client RData Overflow,
Obsolete Record Types, and Experimental Record Types.

DNS looks at DNS Response traffic over UDP and TCP and it requires Stream preprocessor to be enabled for TCP
decoding.

Configuration

By default, all alerts are disabled and the preprocessor checks traffic on port 53.

The available configuration options are described below.

1. ports {<port > [<port >< ... >]}

This option specifies the source ports that the DNS preprocessor should inspect traffic.

2. enable obsolete types

Alert on Obsolete (per RFC 1035) Record Types

3. enable experimental types

Alert on Experimental (per RFC 1035) Record Types

66

4. enable rdata overflow

Check for DNS Client RData TXT Overflow

The DNS preprocessor does nothing if none of the 3 vulnerabilities it checks for are enabled. It will not operate on
TCP sessions picked up midstream, and it will cease operation on a session if it loses state because of missing data
(dropped packets).

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS Client RData overflow vulnerability. Do not alert on
obsolete or experimental RData record types.

preprocessor dns: ports { 53 } \
enable_rdata_overflow

2.1.12 SSL/TLS

Encrypted traffic should be ignored by Snort for both performance reasons and to reduce false positives. The SSL
Dynamic Preprocessor (SSLPP) decodes SSL and TLS traffic andoptionally determines if and when Snort should
stop inspection of it.

Typically, SSL is used over port 443 as HTTPS. By enabling theSSLPP to inspect port 443 and enabling the noin-
spectencrypted option, only the SSL handshake of each connectionwill be inspected. Once the traffic is determined
to be encrypted, no further inspection of the data on the connection is made.

By default, SSLPP looks for a handshake followed by encrypted traffic traveling to both sides. If one side responds
with an indication that something has failed, such as the handshake, the session is not marked as encrypted. Verifying
that faultless encrypted traffic is sent from both endpointsensures two things: the last client-side handshake packet
was not crafted to evade Snort, and that the traffic is legitimately encrypted.

In some cases, especially when packets may be missed, the only observed response from one endpoint will be TCP
ACKs. Therefore, if a user knows that server-side encrypteddata can be trusted to mark the session as encrypted, the
user should use the ’trustservers’ option, documented below.

Configuration

1. ports {<port > [<port >< ... >]}

This option specifies which ports SSLPP will inspect traffic on.

By default, SSLPP watches the following ports:

• 443 HTTPS

• 465 SMTPS

• 563 NNTPS

• 636 LDAPS

• 989 FTPS

• 992 TelnetS

• 993 IMAPS

• 994 IRCS

• 995 POPS

2. noinspect encrypted

Disable inspection on traffic that is encrypted. Default is off.

67

3. trustservers

Disables the requirement that application (encrypted) data must be observed on both sides of the session before
a session is marked encrypted. Use this option for slightly better performance if you trust that your servers are
not compromised. This requires thenoinspect encrypted option to be useful. Default is off.

Examples/Default Configuration from snort.conf

Enables the SSL preprocessor and tells it to disable inspection on encrypted traffic.

preprocessor ssl: noinspect_encrypted

2.1.13 ARP Spoof Preprocessor

The ARP spoof preprocessor decodes ARP packets and detects ARP attacks, unicast ARP requests, and inconsistent
Ethernet to IP mapping.

When no arguments are specified to arpspoof, the preprocessor inspects Ethernet addresses and the addresses in the
ARP packets. When inconsistency occurs, an alert with GID 112 and SID 2 or 3 is generated.

When ”-unicast ” is specified as the argument of arpspoof, the preprocessor checks for unicast ARP requests. An
alert with GID 112 and SID 1 will be generated if a unicast ARP request is detected.

Specify a pair of IP and hardware address as the argument toarpspoof detect host . The host with the IP address
should be on the same layer 2 segment as Snort is. Specify one host IP MAC combo per line. The preprocessor will
use this list when detecting ARP cache overwrite attacks. Alert SID 4 is used in this case.

Format

preprocessor arpspoof[: -unicast]
preprocessor arpspoof_detect_host: ip mac

Table 2.8:Arpspoof detect host Options
Option Description

ip IP address.
mac The Ethernet address corresponding to the preceding IP.

Example Configuration

The first example configuration does neither unicast detection nor ARP mapping monitoring. The preprosessor merely
looks for Ethernet address inconsistencies.

preprocessor arpspoof

The next example configuration does not do unicast detectionbut monitors ARP mapping for hosts 192.168.40.1 and
192.168.40.2.

preprocessor arpspoof
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:f0:0f:00
preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

The third example configuration has unicast detection enabled.

preprocessor arpspoof: -unicast
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:f0:0f:00
preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

68

2.1.14 DCE/RPC 2 Preprocessor

The main purpose of the preprocessor is to perform SMB desegmentation and DCE/RPC defragmentation to avoid
rule evasion using these techniques. SMB desegmentation isperformed for the following commands that can be
used to transport DCE/RPC requests and responses:Write , Write Block Raw , Write and Close , Write AndX ,
Transaction , Transaction Secondary , Read, Read Block Raw andRead AndX. The following transports are sup-
ported for DCE/RPC: SMB, TCP, UDP and RPC over HTTP v.1 proxy and server. New rule options have been im-
plemented to improve performance, reduce false positives and reduce the count and complexity of DCE/RPC based
rules.

Dependency Requirements

For proper functioning of the preprocessor:

• Thedcerpc preprocessor (the initial iteration) must be disabled.

• Stream session tracking must be enabled, i.e.stream5 . The preprocessor requires a session tracker to keep its
data.

• Stream reassembly must be performed for TCP sessions. If it is decided that a session is SMB or DCE/RPC, ei-
ther through configured ports, servers or autodetecting, thedcerpc2 preprocessor will enable stream reassembly
for that session if necessary.

• IP defragmentation should be enabled, i.e. thefrag3 preprocessor should be enabled and configured.

Target Based

There are enough important differences between Windows andSamba versions that a target based approach has been
implemented. Some important differences:

Named pipe instance tracking

A combination of valid login handle or UID, share handle or TID and file/named pipe handle or FID must be
used to write data to a named pipe. The binding between these is dependent on OS/software version.

Samba 3.0.22 and earlier

Any valid UID and TID, along with a valid FID can be used to makea request, however, if the TID
used in creating the FID is deleted (via a tree disconnect), the FID that was created using this TID
becomes invalid, i.e. no more requests can be written to thatnamed pipe instance.

Samba greater than 3.0.22

Any valid TID, along with a valid FID can be used to make a request. However, only the UID used
in opening the named pipe can be used to make a request using the FID handle to the named pipe
instance. If the TID used to create the FID is deleted (via a tree disconnect), the FID that was created
using this TID becomes invalid, i.e. no more requests can be written to that named pipe instance. If
the UID used to create the named pipe instance is deleted (viaa Logoff AndX), since it is necessary
in making a request to the named pipe, the FID becomes invalid.

Windows 2003

Windows XP

Windows Vista

These Windows versions require strict binding between the UID, TID and FID used to make a request
to a named pipe instance. Both the UID and TID used to open the named pipe instance must be
used when writing data to the same named pipe instance. Therefore, deleting either the UID or TID
invalidates the FID.

Windows 2000

69

Windows 2000 is interesting in that the first request to a named pipe must use the same binding as that
of the other Windows versions. However, requests after thatfollow the same binding as Samba 3.0.22
and earlier, i.e. no binding. It also follows Samba greater than 3.0.22 in that deleting the UID or TID
used to create the named pipe instance also invalidates it.

Accepted SMB commands

Samba in particular does not recognize certain commands under anIPC$ tree.

Samba (all versions)

Under anIPC$ tree, does not accept:

Open

Write And Close

Read

Read Block Raw

Write Block Raw

Windows (all versions)

Accepts all of the above commands under anIPC$ tree.

AndX command chaining

Windows is very strict in what command combinations it allows to be chained. Samba, on the other hand, is
very lax and allows some nonsensical combinations, e.g. multiple logins and tree connects (only one place to
return handles for these), login/logoff and tree connect/tree disconnect. Ultimately, we don’t want to keep track
of data that the server won’t accept. An evasion possibilitywould be accepting a fragment in a request that the
server won’t accept that gets sandwiched between an exploit.

Transaction tracking

The differences between aTransaction request and using one of theWrite* commands to write data to a
named pipe are that (1) aTransaction performs the operations of a write and a read from the named pipe,
whereas in using theWrite* commands, the client has to explicitly send one of theRead* requests to tell the
server to send the response and (2) aTransaction request is not written to the named pipe until all of the data is
received (via potentialTransaction Secondary requests) whereas with theWrite* commands, data is written
to the named pipe as it is received by the server. Multiple Transaction requests can be made simultaneously to
the same named pipe. These requests can also be segmented with Transaction Secondary commands. What
distinguishes them (when the same named pipe is being written to, i.e. having the same FID) are fields in the
SMB header representing a process id (PID) and multiplex id (MID). The PID represents the process this request
is a part of. An MID represents different sub-processes within a process (or under a PID). Segments for each
”thread” are stored separately and written to the named pipewhen all segments are received. It is necessary to
track this so as not to munge these requests together (which would be a potential evasion opportunity).

Windows (all versions)

Uses a combination of PID and MID to define a ”thread”.

Samba (all versions)

Uses just the MID to define a ”thread”.

Multliple Bind requests

A Bind request is the first request that must be made in a connection-oriented DCE/RPC session in order to
specify the interface/interfaces that one wants to communicate with.

Windows (all versions)

70

For all of the Windows versions, only oneBind can ever be made on a session whether or not it
succeeds or fails. Any binding after that must use theAlter Context request. If anotherBind is
made, all previous interface bindings are invalidated.

Samba 3.0.20 and earlier

Any amount ofBind requests can be made.

Samba later than 3.0.20

AnotherBind request can be made if the first failed and no interfaces were successfully bound to. If
a Bind after a successfulBind is made, all previous interface bindings are invalidated.

DCE/RPC Fragmented requests - Context ID

Each fragment in a fragmented request carries the context idof the bound interface it wants to make the request
to.

Windows (all versions)

The context id that is ultimately used for the request is contained in the first fragment. The context id
field in any other fragment can contain any value.

Samba (all versions)

The context id that is ultimately used for the request is contained in the last fragment. The context id
field in any other fragment can contain any value.

DCE/RPC Fragmented requests - Operation number

Each fragment in a fragmented request carries an operation number (opnum) which is more or less a handle to
a function offered by the interface.

Samba (all versions)

Windows 2000

Windows 2003

Windows XP

The opnum that is ultimately used for the request is contained in the last fragment. The opnum field
in any other fragment can contain any value.

Windows Vista

The opnum that is ultimately used for the request is contained in the first fragment. The opnum field
in any other fragment can contain any value.

DCE/RPC Stub data byte order

The byte order of the stub data is determined differently forWindows and Samba.

Windows (all versions)

The byte order of the stub data is that which was used in theBind request.

Samba (all versions)

The byte order of the stub data is that which is used in the request carrying the stub data.

Configuration

Thedcerpc2 preprocessor has a global configuration and one or more server configurations. The global preprocessor
configuration name isdcerpc2 and the server preprocessor configuration name isdcerpc2 server .

Global Configuration

71

preprocessor dcerpc2

The globaldcerpc2 configuration is required. Only one globaldcerpc2 configuration can be specified.

Option syntax

Option Argument Required Default

memcap <memcap> NO memcap 102400
disable defrag NONE NO OFF
max frag len <max-frag-len> NO OFF
events <events> NO events [smb, co, cl]
reassemble threshold <re-thresh> NO OFF

memcap = 1024-4194303 (kilobytes)
max-frag-len = 1514-65535
events = pseudo-event | event | ’[’ event-list ’]’
pseudo-event = "none" | "all"
event-list = event | event ’,’ event-list
event = "memcap" | "smb" | "co" | "cl"
re-thresh = 0-65535

Option explanations

memcap

Specifies the maximum amount of run-time memory that can be allocated. Run-time memory includes any
memory allocated after configuration. Default is 100 MB.

disable defrag

Tells the preprocessor not to do DCE/RPC defragmentation. Default is to do defragmentation.

max frag len

Specifies the maximum fragment size that will be added to the defragmention module. If a fragment is
greater than this size, it is truncated before being added tothe defragmentation module. Default is not set.

events

Specifies the classes of events to enable. (See Events section for an enumeration and explanation of events.)

memcap

Only one event. If the memcap is reached or exceeded, alert.
smb

Alert on events related to SMB processing.
co

Stands for connection-orientedDCE/RPC. Alert on events related to connection-orientedDCE/RPC
processing.

cl

Stands for connectionless DCE/RPC. Alert on events relatedto connectionless DCE/RPC pro-
cessing. Defaults aresmb, co andcl .

reassemble threshold

Specifies a minimum number of bytes in the DCE/RPC desegmentation and defragmentation buffers before
creating a reassembly packet to send to the detection engine. This option is useful in inline mode so as to
potentially catch an exploit early before full defragmentation is done. A value of 0 supplied as an argument
to this option will, in effect, disable this option. Defaultis disabled.

Option examples

72

memcap 30000
max_frag_len 16840
events none
events all
events smb
events co
events [co]
events [smb, co]
events [memcap, smb, co, cl]
reassemble_threshold 500

Configuration examples

preprocessor dcerpc2
preprocessor dcerpc2: memcap 500000
preprocessor dcerpc2: max_frag_len 16840, memcap 300000, events smb
preprocessor dcerpc2: memcap 50000, events [memcap, smb, c o, cl], max_frag_len 14440
preprocessor dcerpc2: disable_defrag, events [memcap, sm b]
preprocessor dcerpc2: reassemble_threshold 500

Default global configuration

preprocessor dcerpc2: memcap 102400, events [smb, co, cl]

Server Configuration

preprocessor dcerpc2_server

The dcerpc2 server configuration is optional. Adcerpc2 server configuration must start withdefault or net
options. Thedefault andnet options are mutually exclusive. At most one default configuration can be specified. If
no default configuration is specified, default values will be used for the default configuration. Zero or morenet
configurations can be specified. For anydcerpc2 server configuration, if non-required options are not specified, the
defaults will be used. When processing DCE/RPC traffic, thedefault configuration is used if no net configurations
match. If anet configuration matches, it will override thedefault configuration. Anet configuration matches if the
packet’s server IP address matches an IP address or net specified in thenet configuration. Thenet option supports
IPv6 addresses. Note that port and ip variables defined insnort.conf CANNOT be used.

Option syntax

Option Argument Required Default

default NONE YES NONE
net <net> YES NONE
policy <policy> NO policy WinXP
detect <detect> NO detect [smb [139,445], tcp 135,

udp 135, rpc-over-http-server
593]

autodetect <detect> NO autodetect [tcp 1025:, udp 1025:,
rpc-over-http-server 1025:]

no autodetect http proxy ports NONE NO DISABLED (The preprocessor autodetects
on all proxy ports by default)

smb invalid shares <shares> NO NONE
smb max chain <max-chain> NO smb max chain 3

net = ip | ’[’ ip-list ’]’
ip-list = ip | ip ’,’ ip-list
ip = ip-addr | ip-addr ’/’ prefix | ip4-addr ’/’ netmask
ip-addr = ip4-addr | ip6-addr
ip4-addr = a valid IPv4 address
ip6-addr = a valid IPv6 address (can be compressed)
prefix = a valid CIDR
netmask = a valid netmask

73

policy = "Win2000" | "Win2003" | "WinXP" | "WinVista" |
"Samba" | "Samba-3.0.22" | "Samba-3.0.20"

detect = "none" | detect-opt | ’[’ detect-list ’]’
detect-list = detect-opt | detect-opt ’,’ detect-list
detect-opt = transport | transport port-item |

transport ’[’ port-list ’]’
transport = "smb" | "tcp" | "udp" | "rpc-over-http-proxy" |

"rpc-over-http-server"
port-list = port-item | port-item ’,’ port-list
port-item = port | port-range
port-range = ’:’ port | port ’:’ | port ’:’ port
port = 0-65535
shares = share | ’[’ share-list ’]’
share-list = share | share ’,’ share-list
share = word | ’"’ word ’"’ | ’"’ var-word ’"’
word = graphical ascii characters except ’,’ ’"’ ’]’ ’[’ ’$’
var-word = graphical ascii characters except ’,’ ’"’ ’]’ ’[’

max-chain = 0-255

Because the Snort main parser treats ’$’ as the start of a variable and tries to expand it, shares with ’$’ must be
enclosed quotes.

Option explanations

default

Specifies that this configuration is for the default server configuration.

net

Specifies that this configuration is an IP or net specific configuration. The configuration will only apply to
the IP addresses and nets supplied as an argument.

policy

Specifies the target-based policy to use when processing. Default is ”WinXP”.

detect

Specifies the DCE/RPC transport and server ports that shouldbe detected on for the transport. Defaults
are ports 139 and 445 for SMB, 135 for TCP and UDP, 593 for RPC over HTTP server and 80 for RPC
over HTTP proxy.

autodetect

Specifies the DCE/RPC transport and server ports that the preprocessor should attempt to autodetect on
for the transport. The autodetect ports are only queried if no detect transport/ports match the packet. The
order in which the preprocessor will attempt to autodetect will be - TCP/UDP, RPC over HTTP server,
RPC over HTTP proxy and lastly SMB. Note that most dynamic DCE/RPC ports are above 1024 and ride
directly over TCP or UDP. It would be very uncommon to see SMB on anything other than ports 139 and
445. Defaults are 1025-65535 for TCP, UDP and RPC over HTTP server.

no autodetect http proxy ports

By default, the preprocessor will always attempt to autodetect for ports specified in the detect configuration
for rpc-over-http-proxy. This is because the proxy is likely a web server and the preprocessor should not
look at all web traffic. This option is useful if the RPC over HTTP proxy configured with the detect option
is only used to proxy DCE/RPC traffic. Default is to autodetect on RPC over HTTP proxy detect ports.

smb invalid shares

Specifies SMB shares that the preprocessor should alert on ifan attempt is made to connect to them via a
Tree Connect or Tree Connect AndX . Default is empty.

74

smb max chain

Specifies the maximum amount of AndX command chaining that isallowed before an alert is generated.
Default maximum is 3 chained commands. A value of 0 disables this option.

Option examples

net 192.168.0.10
net 192.168.0.0/24
net [192.168.0.0/24]
net 192.168.0.0/255.255.255.0
net feab:45b3:ab92:8ac4:d322:007f:e5aa:7845
net feab:45b3:ab92:8ac4:d322:007f:e5aa:7845/128
net feab:45b3::/32
net [192.168.0.10, feab:45b3::/32]
net [192.168.0.0/24, feab:45b3:ab92:8ac4:d322:007f:e5 aa:7845]
policy Win2000
policy Samba-3.0.22
detect none
detect smb
detect [smb]
detect smb 445
detect [smb 445]
detect smb [139,445]
detect [smb [139,445]]
detect [smb, tcp]
detect [smb 139, tcp [135,2103]]
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver [593,6002:6004]]
autodetect none
autodetect tcp
autodetect [tcp]
autodetect tcp 2025:
autodetect [tcp 2025:]
autodetect tcp [2025:3001,3003:]
autodetect [tcp [2025:3001,3003:]]
autodetect [tcp, udp]
autodetect [tcp 2025:, udp 2025:]
autodetect [tcp 2025:, udp, rpc-over-http-server [1025:6 001,6005:]]
smb_invalid_shares private
smb_invalid_shares "private"
smb_invalid_shares "C$"
smb_invalid_shares [private, "C$"]
smb_invalid_shares ["private", "C$"]
smb_max_chain 1

Configuration examples

preprocessor dcerpc2_server: default
preprocessor dcerpc2_server: default, policy Win2000
preprocessor dcerpc2_server: default, policy Win2000, de tect [smb, tcp], autodetect tcp 1025:, \

smb_invalid_shares ["C$", "D$", "ADMIN$"]
preprocessor dcerpc2_server: net 10.4.10.0/24, policy Wi n2000
preprocessor dcerpc2_server: net [10.4.10.0/24,feab:45 b3::/126], policy WinVista, smb_max_chain 1
preprocessor dcerpc2_server: net [10.4.10.0/24,feab:45 b3::/126], policy WinVista, \

detect [smb, tcp, rpc-over-http-proxy 8081], autodetect [tcp, rpc-over-http-proxy [1025:6001,6005:]], \
smb_invalid_shares ["C$", "ADMIN$"], no_autodetect_htt p_proxy_ports

preprocessor dcerpc2_server: net [10.4.11.56,10.4.11.5 7], policy Samba, detect smb, autodetect none

Default server configuration

preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593], \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Completedcerpc2 default configuration

preprocessor dcerpc2: memcap 102400, events [smb, co, cl]
preprocessor dcerpc2_server: default, policy WinXP, \

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593], \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

75

Events

The preprocessor uses GID 133 to register events.

Memcap events

SID Description

1 If the memory cap is reached and the preprocessor is configured to alert.

SMB events

SID Description

2 An invalid NetBIOS Session Service type was specified in the header. Valid types are:Message ,
Request (only from client), Positive Response (only from server),Negative Response
(only from server),Retarget Response (only from server) andKeep Alive .

3 An SMB message type was specified in the header. Either a request was made by the server or a
response was given by the client.

4 The SMB id does not equal\xffSMB . Note that since the preprocessor does not yet support
SMB2, id of\xfeSMB is turned away before an eventable point is reached.

5 The word count of the command header is invalid. SMB commandshave pretty specific word
counts and if the preprocessor sees a command with a word count that doesn’t jive with that
command, the preprocessor will alert.

6 Some commands require a minimum number of bytes after the command header. If a command
requires this and the byte count is less than the minimum required byte count for that command,
the preprocessor will alert.

7 Some commands, especially the commands from the SMB Core implementation require a data
format field that specifies the kind of data that will be comingnext. Some commands require a
specific format for the data. The preprocessor will alert if the format is not that which is expected
for that command.

8 Many SMB commands have a field containing an offset from the beginning of the SMB header to
where the data the command is carrying starts. If this offsetputs us before data that has already
been processed or after the end of payload, the preprocessorwill alert.

9 Some SMB commands, such asTransaction , have a field containing the total amount of data
to be transmitted. If this field is zero, the preprocessor will alert.

10 The preprocessor will alert if the NetBIOS Session Service length field contains a value less than
the size of an SMB header.

11 The preprocessor will alert if the remaining NetBIOS packetlength is less than the size of the
SMB command header to be decoded.

12 The preprocessor will alert if the remaining NetBIOS packetlength is less than the size of the
SMB command byte count specified in the command header.

13 The preprocessor will alert if the remaining NetBIOS packetlength is less than the size of the
SMB command data size specified in the command header.

14 The preprocessor will alert if the total data count specifiedin the SMB command header is less
than the data size specified in the SMB command header. (Totaldata count must always be
greater than or equal to current data size.)

15 The preprocessor will alert if the total amount of data sent in a transaction is greater than the total
data count specified in the SMB command header.

16 The preprocessor will alert if the byte count specified in theSMB command header is less than
the data size specified in the SMB command. (The byte count must always be greater than or
equal to the data size.)

76

17 Some of the Core Protocol commands (from the initial SMB implementation) require that the
byte count be some value greater than the data size exactly. The preprocessor will alert if the
byte count minus a predetermined amount based on the SMB command is not equal to the data
size.

18 For theTree Connect command (and not theTree Connect AndX command), the preprocessor
has to queue the requests up and wait for a server response to determine whether or not an IPC
share was successfully connected to (which is what the preprocessor is interested in). Unlike
the Tree Connect AndX response, there is no indication in theTree Connect response as to
whether the share is IPC or not. There should be under normal circumstances no more than a few
pending tree connects at a time and the preprocessor will alert if this number is excessive.

19 After a client is done writing data using theWrite* commands, it issues aRead* command to
the server to tell it to send a response to the data it has written. In this case the preprocessor
is concerned with the server response. TheRead* request contains the file id associated with a
named pipe instance that the preprocessor will ultimately send the data to. The server response,
however, does not contain this file id, so it need to be queued with the request and dequeued with
the response. If multipleRead* requests are sent to the server, they are responded to in the order
they were sent. There should be under normal circumstances no more than a few pendingRead*
requests at a time and the preprocessor will alert if this number is excessive.

20 The preprocessor will alert if the number of chained commands in a single request is greater than
or equal to the configured amount (default is 3).

21 With AndX command chaining it is possible to chain multipleSession Setup AndX commands
within the same request. There is, however, only one place inthe SMB header to return a login
handle (or Uid). Windows does not allow this behavior, however Samba does. This is anomalous
behavior and the preprocessor will alert if it happens.

22 With AndX command chaining it is possible to chain multipleTree Connect AndX commands
within the same request. There is, however, only one place inthe SMB header to return a tree
handle (or Tid). Windows does not allow this behavior, however Samba does. This is anomalous
behavior and the preprocessor will alert if it happens.

23 When aSession Setup AndX request is sent to the server, the server responds (if the client
successfully authenticates) which a user id or login handle. This is used by the client in subse-
quent requests to indicate that it has authenticated. ALogoff AndX request is sent by the client
to indicate it wants to end the session and invalidate the login handle. With commands that are
chained after aSession Setup AndX request, the login handle returned by the server is used for
the subsequent chained commands. The combination of aSession Setup AndX command with
a chainedLogoff AndX command, essentially logins in and logs off in the same request and is
anomalous behavior. The preprocessor will alert if it sees this.

24 A Tree Connect AndX command is used to connect to a share. TheTree Disconnect com-
mand is used to disconnect from that share. The combination of a Tree Connect AndX com-
mand with a chainedTree Disconnect command, essentially connects to a share and discon-
nects from the same share in the same request and is anomalousbehavior. The preprocessor will
alert if it sees this.

25 An Open AndX or Nt Create AndX command is used to open/create a file or named pipe. (The
preprocessor is only interested in named pipes as this is where DCE/RPC requests are written to.)
TheClose command is used to close that file or named pipe. The combination of aOpen AndX
or Nt Create AndX command with a chainedClose command, essentially opens and closes the
named pipe in the same request and is anomalous behavior. Thepreprocessor will alert if it sees
this.

26 The preprocessor will alert if it sees any of the invalid SMB shares configured. It looks for a
Tree Connect or Tree Connect AndX to the share.

Connection-oriented DCE/RPC events

SID Description

77

27 The preprocessor will alert if the connection-oriented DCE/RPC major version contained in the
header is not equal to 5.

28 The preprocessor will alert if the connection-oriented DCE/RPC minor version contained in the
header is not equal to 0.

29 The preprocessor will alert if the connection-oriented DCE/RPC PDU type contained in the
header is not a valid PDU type.

30 The preprocessor will alert if the fragment length defined inthe header is less than the size of the
header.

31 The preprocessor will alert if the remaining fragment length is less than the remaining packet
size.

32 The preprocessor will alert if in aBind or Alter Context request, there are no context items
specified.

33 The preprocessor will alert if in aBind or Alter Context request, there are no transfer syntaxes
to go with the requested interface.

34 The preprocessor will alert if a non-last fragment is less than the size of the negotiated maximum
fragment length. Most evasion techniques try to fragment the data as much as possible and
usually each fragment comes well below the negotiated transmit size.

35 The preprocessor will alert if a fragment is larger than the maximum negotiated fragment length.
36 The byte order of the request data is determined by the Bind inconnection-oriented DCE/RPC

for Windows. It is anomalous behavior to attempt to change the byte order mid-session.
37 The call id for a set of fragments in a fragmented request should stay the same (it is incremented

for each complete request). The preprocessor will alert if it changes in a fragment mid-request.
38 The operation number specifies which function the request iscalling on the bound interface. If a

request is fragmented, this number should stay the same for all fragments. The preprocessor will
alert if the opnum changes in a fragment mid-request.

39 The context id is a handle to a interface that was bound to. If arequest if fragmented, this number
should stay the same for all fragments. The preprocessor will alert if the context id changes in a
fragment mid-request.

Connectionless DCE/RPC events

SID Description

40 The preprocessor will alert if the connectionless DCE/RPC major version is not equal to 4.
41 The preprocessor will alert if the connectionless DCE/RPC pdu type is not a valid pdu type.
42 The preprocessor will alert if the packet data length is lessthan the size of the connectionless

header.
43 The preprocessor will alert if the sequence number uses in a request is the same or less than a

previously used sequence number on the session. In testing,wrapping the sequence number space
produces strange behavior from the server, so this should beconsidered anomalous behavior.

Rule Options

New rule options are supported by enabling thedcerpc2 preprocessor:

dce_iface
dce_opnum
dce_stub_data

New modifiers to existingbyte test andbyte jump rule options:

78

byte_test: dce
byte_jump: dce

dce iface

For DCE/RPC based rules it has been necessary to set flow-bitsbased on a client bind to a service to avoid
false positives. It is necessary for a client to bind to a service before being able to make a call to it. When a
client sends a bind request to the server, it can, however, specify one or more service interfaces to bind to. Each
interface is represented by a UUID. Each interface UUID is paired with a unique index (or context id) that future
requests can use to reference the service that the client is making a call to. The server will respond with the
interface UUIDs it accepts as valid and will allow the clientto make requests to those services. When a client
makes a request, it will specify the context id so the server knows what service the client is making a request
to. Instead of using flow-bits, a rule can simply ask the preprocessor, using this rule option, whether or not the
client has bound to a specific interface UUID and whether or not this client request is making a request to it.
This can eliminate false positives where more than one service is bound to successfully since the preprocessor
can correlate the bind UUID to the context id used in the request. A DCE/RPC request can specify whether
numbers are represented as big endian or little endian. The representation of the interface UUID is different
depending on the endianness specified in the DCE/RPC previously requiring two rules - one for big endian and
one for little endian. The preprocessor eliminates the needfor two rules by normalizing the UUID. An interface
contains a version. Some versions of an interface may not be vulnerable to a certain exploit. Also, a DCE/RPC
request can be broken up into 1 or more fragments. Flags (and afield in the connectionless header) are set in the
DCE/RPC header to indicate whether the fragment is the first,a middle or the last fragment. Many checks for
data in the DCE/RPC request are only relevant if the DCE/RPC request is a first fragment (or full request), since
subsequent fragments will contain data deeper into the DCE/RPC request. A rule which is looking for data,
say 5 bytes into the request (maybe it’s a length field), will be looking at the wrong data on a fragment other
than the first, since the beginning of subsequent fragments are already offset some length from the beginning of
the request. This can be a source of false positives in fragmented DCE/RPC traffic. By default it is reasonable
to only evaluate if the request is a first fragment (or full request). However, if theany frag option is used to
specify evaluating on all fragments.

Syntax

<uuid> [’,’ <operator> <version>] [’,’ "any_frag"]

uuid = hexlong ’-’ hexshort ’-’ hexshort ’-’ 2hexbyte ’-’ 6he xbyte
hexlong = 4hexbyte
hexshort = 2hexbyte
hexbyte = 2HEXDIGIT
operator = ’<’ | ’>’ | ’=’ | ’!’
version = 0-65535

Examples

dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6ee188;
dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6ee188,<2;
dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6ee188,any_ frag;
dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6ee188,=1,a ny_frag;

This option is used to specify an interface UUID. Optional arguments are an interface version and operator to
specify that the version be less than (’<’), greater than (’>’), equal to (’=’) or not equal to (’!’) the version
specified. Also, by default the rule will only be evaluated for a first fragment (or full request, i.e. not a fragment)
since most rules are written to start at the beginning of a request. Theany frag argument says to evaluate for
middle and last fragments as well. This option requires tracking client Bind andAlter Context requests as
well as serverBind Ack andAlter Context responses for connection-oriented DCE/RPC in the preprocessor.
For eachBind andAlter Context request, the client specifies a list of interface UUIDs alongwith a handle
(or context id) for each interface UUID that will be used during the DCE/RPC session to reference the interface.
The server response indicates which interfaces it will allow the client to make requests to - it either accepts
or rejects the client’s wish to bind to a certain interface. This tracking is required so that when a request is
processed, the context id used in the request can be correlated with the interface UUID it is a handle for.

79

hexlong andhexshort will be specified and interpreted to be in big endian order (this is usually the default
way an interface UUID will be seen and represented). As an example, the following Messenger interface UUID
as taken off the wire from a little endianBind request:

|f8 91 7b 5a 00 ff d0 11 a9 b2 00 c0 4f b6 e6 fc|

must be written as:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

The same UUID taken off the wire from a big endianBind request:

|5a 7b 91 f8 ff 00 11 d0 a9 b2 00 c0 4f b6 e6 fc|

must be written the same way:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

This option matches if the specified interface UUID matches the interface UUID (as referred to by the context
id) of the DCE/RPC request and if supplied, the version operation is true. This option will not match if the
fragment is not a first fragment (or full request) unless theany frag option is supplied in which case only the
interface UUID and version need match. Note that a defragmented DCE/RPC request will be considered a full
request.

dce opnum

The opnum represents a specific function call to an interface. After is has been determined that a client has
bound to a specific interface and is making a request to it (seeabove -dce iface) usually we want to know
what function call it is making to that service. It is likely that an exploit lies in the particular DCE/RPC function
call.

Syntax

<opnum-list>

opnum-list = opnum-item | opnum-item ’,’ opnum-list
opnum-item = opnum | opnum-range
opnum-range = opnum ’-’ opnum
opnum = 0-65535

Examples

dce_opnum: 15;
dce_opnum: 15-18;
dce_opnum: 15,18-20;
dce_opnum: 15,17,20-22;

This option is used to specify an opnum (or operation number), opnum range or list containing either or both
opnum and/or opnum-range. The opnum of a DCE/RPC request will be matched against the opnums specified
with this option. This option matches if any one of the opnumsspecified match the opnum of the DCE/RPC
request.

dce stub data

Since most netbios rules were doing protocol decoding only to get to the DCE/RPC stub data, i.e. the remote
procedure call or function call data, this option will alleviate this need and place the cursor at the beginning of
the DCE/RPC stub data. This reduces the number of rule optionchecks and the complexity of the rule.

This option takes no arguments.

Example

80

dce_stub_data;

This option is used to place the cursor (used to walk the packet payload in rules processing) at the beginning
of the DCE/RPC stub data, regardless of preceding rule options. There are no arguments to this option. This
option matches if there is DCE/RPC stub data.

byte test andbyte jump

A DCE/RPC request can specify whether numbers are represented in big or little endian. These rule options will
take as a new argumentdce and will work basically the same as the normalbyte test /byte jump , but since
the DCE/RPC preprocessor will know the endianness of the request, it will be able to do the correct conversion.

byte test

Syntax

<convert> ’,’ [’!’] <operator> ’,’ <value> [’,’ <offset> [’ ,’ "relative"]] ’,’ "dce"

convert = 1 | 2 | 4
operator = ’<’ | ’=’ | ’>’ | ’&’ | ’ˆ’
value = 0-4294967295
offset = -65535 to 65535

Examples

byte_test: 4,>,35000,0,relative,dce;
byte_test: 2,!=,2280,-10,relative,dce;

When using thedce argument to abyte test , the following normalbyte test arguments will not be
allowed:big , little , string , hex , dec andoct .

byte jump

Syntax

<convert> ’,’ <offset> [’,’ "relative"] [’,’ "multiplier" <mult-value>] [’,’ "align"] \
[’,’ "post_offet" <adjustment-value>] ’,’ "dce"

convert = 1 | 2 | 4
offset = -65535 to 65535
mult-value = 0-65535
adjustment-value = -65535 to 65535

Example

byte_jump:4,-4,relative,align,multiplier 2,post_offs et -4,dce;

When using thedce argument to abyte jump , the following normalbyte jump arguments will not be
allowed:big , little , string , hex , dec , oct andfrom beginning .

Example of rule complexity reduction

The following two rules using the new rule options replace 64(set and isset flowbit) rules that are necessary if
the new rule options are not used:

alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593 ,1024:] \
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ ished,to_server; \
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_ opnum:0-11; dce_stub_data; \
pcre:"/ˆ.{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump :4,-4,relative,align,dce; \
byte_test:4,>,256,4,relative,dce; reference:bugtraq, 23470; reference:cve,2007-1748; \
classtype:attempted-admin; sid:1000068;)

alert udp $EXTERNAL_NET any -> $HOME_NET [135,1024:] \
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ ished,to_server; \
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_ opnum:0-11; dce_stub_data; \
pcre:"/ˆ.{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump :4,-4,relative,align,dce; \
byte_test:4,>,256,4,relative,dce; reference:bugtraq, 23470; reference:cve,2007-1748; \
classtype:attempted-admin; sid:1000069;)

81

2.2 Decoder and Preprocessor Rules

Decoder and preprocessor rules allow one to enable and disable decoder and preprocessor events on a rule by rule
basis. They also allow one to specify the rule type or action of a decoder or preprocessor event on a rule by rule basis.

Decoder config options will still determine whether or not togenerate decoder events. For example, ifconfig
disable decode alerts is in snort.conf , decoder events will not be generated regardless of whetheror not there
are corresponding rules for the event. Also note that if the decoder is configured to enable drops, e.g.config
enable decode drops , these options will take precedence over the event type of the rule. A packet will be dropped
if either a decoder config drop option is insnort.conf or the decoder or preprocessor rule type isdrop . Of course,
the drop cases only apply if Snort is running inline. Seedoc/README.decode for config options that control decoder
events.

2.2.1 Configuring

The following options to configure will enable decoder and preprocessor rules:

$./configure --enable-decoder-preprocessor-rules

The decoder and preprocessor rules are located in thepreproc rules/ directory in the top level source tree, and
have the namesdecoder.rules andpreprocessor.rules respectively. These files are updated as new decoder and
preprocessor events are added to Snort.

To enable these rules insnort.conf , define the path to where the rules are located and uncomment the include lines
in snort.conf that reference the rules files.

var PREPROC_RULE_PATH /path/to/preproc_rules
...
include $PREPROC_RULE_PATH/preprocessor.rules
include $PREPROC_RULE_PATH/decoder.rules

To disable any rule, just comment it with a# or remove the rule completely from the file (commenting is recom-
mended).

To change the rule type or action of a decoder/preprocessor rule, just replacealert with the desired rule type. Any
one of the following rule types can be used:

alert
log
pass
drop
sdrop
reject

For example one can change:

alert (msg: "DECODE_NOT_IPV4_DGRAM"; sid: 1; gid: 116; rev : 1; \
metadata: rule-type decode ; classtype:protocol-command -decode;)

to

drop (msg: "DECODE_NOT_IPV4_DGRAM"; sid: 1; gid: 116; rev: 1; \
metadata: rule-type decode ; classtype:protocol-command -decode;)

to drop (as well as alert on) packets where the Ethernet protocol is IPv4 but version field in IPv4 header has a value
other than 4.

SeeREADME.decode, README.gre and the various preprocessor READMEs for descriptions of the rules indecoder.rules
andpreprocessor.rules .

82

2.2.2 Reverting to original behavior

If you have configured snort to use decoder and preprocessor rules, the following config option insnort.conf will
make Snort revert to the old behavior:

config autogenerate_preprocessor_decoder_rules

Note that if you want to revert to the old behavior, you also have to remove the decoder and preprocessor rules and
any reference to them fromsnort.conf , otherwise they will be loaded. This option applies to rulesnot specified and
the default behavior is to alert.

2.2.3 Suppression and Thresholding

The use of decoder and preprocessor rules does not change suppression and thresholding behavior.

2.3 Event Thresholding

You can use event thresholding to reduce the number of loggedalerts for noisy rules. This can be tuned to significantly
reduce false alarms, and it can also be used to write a newer breed of rules. Thresholding commands limit the number
of times a particular event is logged during a specified time interval. See Section 3.8 for more information.

2.4 Performance Profiling

Snort can provide statistics on rule and preprocessor performance. Each require only a simpleconfig option to
snort.conf and Snort will print statistics on the worst (or all) performers on exit. When a file name is provided in
profile rules or profile preprocs , the statistics will be saved in these files. If theappend option is not present,
previous data in these files will be overwritten.

2.4.1 Rule Profiling

Format

config profile rules: print [all | <num>], sort <sort option> [,filename <filename> [append]]

• <num> is the number of rules to print

• <sort option> is one of:

checks

matches

nomatches

avg ticks

avg ticks per match

avg ticks per nomatch

total ticks

• <filename> is the output filename

• [append] dictates that the output will go to the same file each time (optional)

83

Examples

• Print all rules, sort by avgticks (default configuration if option is turned on)

config profile rules

• Print all rules, sort by avgticks, and append to filerules stats.txt

config profile rules filename rules stats.txt append

• Print the top 10 rules, based on highest average time

config profile rules: print 10, sort avg ticks

• Print all rules, sorted by number of checks

config profile rules: print all, sort checks

• Print top 100 rules, based on total time

config profile rules: print 100, sort total ticks

• Print with default options, save results to performance.txt each time

config profile rules: filename performance.txt append

• Print top 20 rules, save results to perf.txt with timestamp in filename

config profile rules: print 20, filename perf.txt

Output

Snort will print a table much like the following at exit.

Rule Profile Statistics (worst 4 rules)
=== =======

Num SID GID Checks Matches Alerts Microsecs Avg/Check Avg/M atch Avg/Nonmatch
=== === === ====== ======= ====== ===== ========= ========= ============

1 3197 1 7687 0 0 38502587 5008.8 0.0 5008.8
2 5997 1 63600 0 0 6305052 99.1 0.0 99.1
3 2278 1 59521 0 0 5889631 99.0 0.0 99.0
4 2580 1 29509 0 0 2660302 90.2 0.0 90.2

Figure 2.7: Rule Profiling Example Output

Configuration line used to print the above table:

config profile rules: print 4, sort total ticks

The columns represent:

• Number (rank)

• Sig ID

• Generator ID

• Checks (number of times rule was evaluated after fast pattern match within portgroup or any->any rules)

• Matches (number of times ALL rule options matched, will be high for rules that have no options)

• Alerts (number of alerts generated from this rule)

• CPU Ticks

• Avg Ticks per Check

• Avg Ticks per Match

84

• Avg Ticks per Nonmatch

Interpreting this info is the key. The Microsecs (or Ticks) column is important because that is the total time spent
evaluating a given rule. But, if that rule is causing alerts,it makes sense to leave it alone.

A high Avg/Check is a poor performing rule, that most likely contains PCRE. High Checks and low Avg/Check is
usually an any->any rule with few rule options and no content. Quick to check,the few options may or may not match.
We are looking at moving some of these into code, especially those with low SIDs.

By default, this information will be printed to the console when Snort exits. You can use the ”filename” option in
snort.conf to specify a file where this will be written. If ”append” is not specified, a new file will be created each time
Snort is run. The filenames will have timestamps appended to them. These files will be found in the logging directory.

2.4.2 Preprocessor Profiling

Format

config profile preprocs: print [all | <num>], sort <sort option> [, filename <filename> [append]]

• <num> is the number of preprocessors to print

• <sort option> is one of:

checks

avg ticks

total ticks

• <filename> is the output filename

• [append] dictates that the output will go to the same file each time (optional)

Examples

• Print all preprocessors, sort by avgticks (default configuration if option is turned on)

config profile preprocs

• Print all preprocessors, sort by avgticks, and append to filepreprocs stats.txt

config profile preprocs, filename preprocs stats.txt append

• Print the top 10 preprocessors, based on highest average time

config profile preprocs: print 10, sort avg ticks

• Print all preprocessors, sorted by number of checks

config profile preprocs: print all, sort checks

Output

Snort will print a table much like the following at exit.

Configuration line used to print the above table:

config profile rules: print 3, sort total ticks

The columns represent:

• Number (rank) - The number is indented for each layer. Layer 1preprocessors are listed under their respective
caller (and sorted similarly).

85

Preprocessor Profile Statistics (worst 3)
=== =======

Num Preprocessor Layer Checks Exits Microsecs Avg/Check Pc t of Caller
=== ============ ===== ====== ===== ===== ========= ====== =======

1 eventq 0 2085703 2085703 417322297 200.1 75.8
2 detect 0 927064 927064 121532657 131.1 22.1

1 rule eval 1 26075024 26075024 111453838 4.3 91.7
2 mpse 1 379155 379155 6447327 17.0 5.3

3 s4 0 765281 765281 55753764 72.9 10.1
1 s4Flush 1 83519 83519 65398702 783.0 117.3

1 s4ProcessRebuilt 2 43638 43638 65123864 1492.4 99.6
2 s4BuildPacket 2 73351 73351 187102 2.6 0.3

2 s4StateAction 1 764662 764662 11589061 15.2 20.8
3 s4State 1 764662 764662 874695 1.1 1.6
4 s4GetSess 1 765281 765281 508631 0.7 0.9
5 s4PktInsert 1 190331 190331 182737 1.0 0.3
6 s4NewSess 1 65657 65657 111846 1.7 0.2
7 s4Prune 1 59 59 613 10.4 0.0

total total 0 1018323 1018323 550830338 540.9 0.0

Figure 2.8: Preprocessor Profiling Example Output

• Preprocessor Name

• Layer - When printing a specific number of preprocessors all subtasks info for a particular preprocessor is
printed for each layer 0 preprocessor stat.

• Checks (number of times preprocessor decided to look at a packet, ports matched, app layer header was correct,
etc)

• Exits (number of corresponding exits – just to verify code isinstrumented correctly, should ALWAYS match
Checks, unless an exception was trapped)

• CPU Ticks

• Avg Ticks per Check

• Percent of caller - For non layer 0 preprocessors, i.e. subroutines within preprocessors, this identifies the percent
of the caller’s ticks that is spent for this subtask.

Because of task swapping, non-instrumented code, and otherfactors, the Pct of Caller field will not add up to 100%
of the caller’s time. It does give a reasonable indication ofhow much relative time is spent within each subtask.

By default, this information will be printed to the console when Snort exits. You can use the ”filename” option in
snort.conf to specify a file where this will be written. If ”append” is not specified, a new file will be created each time
Snort is run. The filenames will have timestamps appended to them. These files will be found in the logging directory.

2.4.3 Packet Performance Monitoring (PPM)

PPM provides thresholding mechanisms that can be used to provide a basic level of latency control for snort. It does
not provide a hard and fast latency guarantee but should in effect provide a good average latency control. Both rules
and packets can be checked for latency. The action taken upondetection of excessive latency is configurable. The
following sections describe configuration, sample output,and some implementation details worth noting.

To use PPM, you must build with the –enable-ppm or the –enable-sourcefire option to configure.

PPM is configured as follows:

Packet configuration:
config ppm: max-pkt-time <micro-secs>, \

fastpath-expensive-packets, \
pkt-log, \

86

debug-pkts

Rule configuration:
config ppm: max-rule-time <micro-secs>, \

threshold count, \
suspend-expensive-rules, \
suspend-timeout <seconds>, \
rule-log [log] [alert]

Packets and rules can be configured separately, as above, or together in just one config ppm statement. Packet and rule
monitoring is independent, so one or both or neither may be enabled.

Configuration

Packet Configuration Options

max-pkt-time <micro-secs>

• enables packet latency thresholding using ’micros-secs’ as the limit.

• default is 0 (packet latency thresholding disabled)

• reasonable starting defaults: 100/250/1000 for 1G/100M/5M nets

fastpath-expensive-packets

• enables stopping further inspection of a packet if the max time is exceeded

• default is off

pkt-log

• enables logging packet event if packet exceeds max-pkt-time

• logging is to syslog or console depending upon snort configuration

• default is no logging

debug-pkts

• enables per packet timing stats to be printed after each packet

• default is off

Rule Configuration Options

max-rule-time <micro-secs>

• enables rule latency thresholding using ’micros-secs’ as the limit.

• default is 0 (rule latency thresholding disabled)

• reasonable starting defaults: 100/250/1000 for 1G/100M/5M nets

threshold <count>

• sets the number of consecutive rule time excesses before disabling a rule

• default is 5

87

suspend-expensive-rules

• enables suspending rule inspection if the max rule time is exceeded

• default is off

suspend-timeout <seconds>

• rule suspension time in seconds

• default is 60 seconds

• set to zero to permanently disable expensive rules

rule-log [log] [alert]

• enables event logging output for rules

• default is no logging

• one or both of the options ’log’ and ’alert’ must be used with ’rule-log’

• the log option enables output to syslog or console dependingupon snort configuration

Examples

Example 1: The following enables packet tracking:

config ppm: max-pkt-time 100

The following enables rule tracking:

config ppm: max-rule-time 50, threshold 5

If fastpath-expensive-packets or suspend-expensive-rules is not used, then no action is taken other than to increment
the count of the number of packets that should be fastpath’d or the rules that should be suspended. A summary of this
information is printed out when snort exits.

Example 2: The following suspends rules and aborts packet inspection. These rules were used to generate the sample
output that follows.

config ppm: max-pkt-time 50, fastpath-expensive-packets , pkt-log, \
debug-pkt

config ppm: max-rule-time 50, threshold 5, suspend-expens ive-rules, \
suspend-timeout 300, rule-log log alert

Sample Snort Output

Sample Snort Startup Output

Packet Performance Monitor Config:
ticks per usec : 1600 ticks
max packet time : 50 usecs
packet action : fastpath-expensive-packets
packet logging : log
debug-pkts : disabled

88

Rule Performance Monitor Config:
ticks per usec : 1600 ticks
max rule time : 50 usecs
rule action : suspend-expensive-rules
rule threshold : 5
suspend timeout : 300 secs
rule logging : alert log

Sample Snort Run-time Output

...
PPM: Process-BeginPkt[61] caplen=60
PPM: Pkt[61] Used= 8.15385 usecs
PPM: Process-EndPkt[61]

PPM: Process-BeginPkt[62] caplen=342
PPM: Pkt[62] Used= 65.3659 usecs
PPM: Process-EndPkt[62]

PPM: Pkt-Event Pkt[63] used=56.0438 usecs, 0 rules, 1 nc-ru les tested, packet fastpathed.
PPM: Process-BeginPkt[63] caplen=60
PPM: Pkt[63] Used= 8.394 usecs
PPM: Process-EndPkt[63]

PPM: Process-BeginPkt[64] caplen=60
PPM: Pkt[64] Used= 8.21764 usecs
PPM: Process-EndPkt[64]
...

Sample Snort Exit Output

Packet Performance Summary:
max packet time : 50 usecs
packet events : 1
avg pkt time : 0.633125 usecs

Rule Performance Summary:
max rule time : 50 usecs
rule events : 0
avg nc-rule time : 0.2675 usecs

Implementation Details

• Enforcement of packet and rule processing times is done after processing each rule. Latency control is not
enforced after each preprocessor.

• This implementation is software based and does not use an interrupt driven timing mechanism and is therefore
subject to the granularity of the software based timing tests. Due to the granularity of the timing measurements
any individual packet may exceed the user specified packet orrule processing time limit. Therefore this imple-
mentation cannot implement a precise latency guarantee with strict timing guarantees. Hence the reason this is
considered a best effort approach.

• Since this implementation depends on hardware based high performance frequency counters, latency threshold-
ing is presently only available on Intel and PPC platforms.

• Time checks are made based on the total system time, not processor usage by Snort. This was a conscious design
decision because when a system is loaded, the latency for a packet is based on the total system time, not just the
processor time the Snort application receives. Therefore,it is recommended that you tune your thresholding to
operate optimally when your system is under load.

89

2.5 Output Modules

Output modules are new as of version 1.6. They allow Snort to be much more flexible in the formatting and presentation
of output to its users. The output modules are run when the alert or logging subsystems of Snort are called, after
the preprocessors and detection engine. The format of the directives in the rules file is very similar to that of the
preprocessors.

Multiple output plugins may be specified in the Snort configuration file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in sequencewhen an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /var/log/snort by default or to a user directed directory (using the-l
command line switch).

Output modules are loaded at runtime by specifying the output keyword in the rules file:

output <name>: <options>

output alert_syslog: log_auth log_alert

Figure 2.9: Output Module Configuration Example

2.5.1 alert syslog

This module sends alerts to the syslog facility (much like the -s command line switch). This module also allows the
user to specify the logging facility and priority within theSnort rules file, giving users greater flexibility in logging
alerts.

Available Keywords

Facilities

• log auth

• log authpriv

• log daemon

• log local0

• log local1

• log local2

• log local3

• log local4

• log local5

• log local6

• log local7

• log user

90

Priorities

• log emerg

• log alert

• log crit

• log err

• log warning

• log notice

• log info

• log debug

Options

• log cons

• log ndelay

• log perror

• log pid

Format

alert_syslog: <facility> <priority> <options>

△! NOTE
As WIN32 does not run syslog servers locally by default, a hostname and port can be passed as options. The
default host is 127.0.0.1. The default port is 514.

output alert_syslog: [host=<hostname[:<port>],] <facil ity> <priority> <options>

output alert_syslog: 10.1.1.1:514, <facility> <priority > <options>

Figure 2.10: Syslog Configuration Example

2.5.2 alert fast

This will print Snort alerts in a quick one-line format to a specified output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packet headers to the output file

Format

alert_fast: <output filename>

91

output alert_fast: alert.fast

Figure 2.11: Fast Alert Configuration

2.5.3 alert full

This will print Snort alert messages with full packet headers. The alerts will be written in the default logging directory
(/var/log/snort) or in the logging directory specified at the command line.

Inside the logging directory, a directory will be created per IP. These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slows Snort down considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

alert_full: <output filename>

output alert_full: alert.full

Figure 2.12: Full Alert Configuration

2.5.4 alert unixsock

Sets up a UNIX domain socket and sends alert reports to it. External programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. This is currently an experimental interface.

Format

alert_unixsock

output alert_unixsock

Figure 2.13: UNIXSock Alert Configuration

2.5.5 logtcpdump

The log tcpdump module logs packets to a tcpdump-formatted file. This is useful for performing post-process analysis
on collected traffic with the vast number of tools that are available for examining tcpdump-formatted files. This module
only takes a single argument: the name of the output file. Notethat the file name will have the UNIX timestamp in
seconds appended the file name. This is so that data from separate Snort runs can be kept distinct.

Format

log_tcpdump: <output filename>

output log_tcpdump: snort.log

Figure 2.14: Tcpdump Output Module Configuration Example

92

2.5.6 database

This module from Jed Pickel sends Snort data to a variety of SQL databases. More information on installing and
configuring this module can be found on the [91]incident.orgweb page. The arguments to this plugin are the name of
the database to be logged to and a parameter list. Parametersare specified with the format parameter = argument. see
Figure 2.15 for example usage.

Format

database: <log | alert>, <database type>, <parameter list>

The following parameters are available:

host - Host to connect to. If a non-zero-length string is specified, TCP/IP communication is used. Without a host
name, it will connect using a local UNIX domain socket.

port - Port number to connect to at the server host, or socket filename extension for UNIX-domain connections.

dbname - Database name

user - Database username for authentication

password - Password used if the database demands password authentication

sensor name - Specify your own name for this Snort sensor. If you do not specify a name, one will be generated
automatically

encoding - Because the packet payload and option data is binary, thereis no one simple and portable way to store it
in a database. Blobs are not used because they are not portable across databases. So i leave the encoding option
to you. You can choose from the following options. Each has its own advantages and disadvantages:

hex (default) - Represent binary data as a hex string.

Storage requirements - 2x the size of the binary

Searchability - very good

Human readability - not readable unless you are a true geek, requires post processing

base64 - Represent binary data as a base64 string.

Storage requirements - ∼1.3x the size of the binary

Searchability - impossible without post processing

Human readability - not readable requires post processing

ascii - Represent binary data as an ASCII string. This is the only option where you will actually lose data.
Non-ASCII Data is represented as a ‘.’. If you choose this option, then data for IP and TCP options will
still be represented as hex because it does not make any sensefor that data to be ASCII.

Storage requirements - slightly larger than the binary because some characters are escaped (&,<,>)

Searchability - very good for searching for a text string impossible if you want to search for binary

human readability - very good

detail - How much detailed data do you want to store? The options are:

full (default) - Log all details of a packet that caused an alert (including IP/TCP options and the payload)

fast - Log only a minimum amount of data. You severely limit the potential of some analysis applications
if you choose this option, but this is still the best choice for some applications. The following fields are
logged:timestamp , signature , source ip , destination ip , source port , destination port , tcp
flags , andprotocol)

93

Furthermore, there is a logging method and database type that must be defined. There are two logging types available,
log andalert . Setting the type to log attaches the database logging functionality to the log facility within the program.
If you set the type to log, the plugin will be called on the log output chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are five database types available in the current version of the plugin. These aremssql , mysql , postgresql ,
oracle , andodbc . Set the type to match the database you are using.

△! NOTE
The database output plugin does not have the ability to handle alerts that are generated by using thetag
keyword. See section 3.7.5 for more details.

output database: log, mysql, dbname=snort user=snort host =localhost password=xyz

Figure 2.15: Database Output Plugin Configuration

2.5.7 csv

The csv output plugin allows alert data to be written in a format easily importable to a database. The plugin requires
2 arguments: a full pathname to a file and the output formatting option.

The list of formatting options is below. If the formatting option is default, the output is in the order the formatting
option is listed.

• timestamp

• sig generator

• sig id

• sig rev

• msg

• proto

• src

• srcport

• dst

• dstport

• ethsrc

• ethdst

• ethlen

• tcpflags

• tcpseq

• tcpack

• tcplen

• tcpwindow

• ttl

94

• tos

• id

• dgmlen

• iplen

• icmptype

• icmpcode

• icmpid

• icmpseq

Format

output alert_csv: <filename> <format>

output alert_csv: /var/log/alert.csv default

output alert_csv: /var/log/alert.csv timestamp, msg

Figure 2.16: CSV Output Configuration

2.5.8 unified

The unified output plugin is designed to be the fastest possible method of logging Snort events. The unified output
plugin logs events in binary format, allowing another programs to handle complex logging mechanisms that would
otherwise diminish the performance of Snort.

The nameunified is a misnomer, as the unified output plugin creates two different files, analert file, and alog file.
The alert file contains the high-level details of an event (eg: IPs, protocol, port, message id). The log file contains
the detailed packet information (a packet dump with the associated event ID). Both file types are written in a bimary
format described inspo unified.h.

△! NOTE
Files have the file creation time (in Unix Epoch format) appended to each file when it is created.

Format

output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size li mit in MB>]

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

Figure 2.17: Unified Configuration Example

95

2.5.9 unified 2

The unified2 output plugin is a replacement for the unified output plugin. It has the same performance characteristics,
but a slightly different logging format. See section 2.5.8 on unified logging for more information.

Unified2 can work in one of three modes, packet logging, alertlogging, or true unified logging. Packet logging
includes a capture of the entire packet and is specified withlog unified2 . Likewise, alert logging will only log
events and is specified withalert unified2 . To include both logging styles in a single, unified file, simply specify
unified2 .

When MPLS support is turned on, MPLS labels can be included inunified2 events. Use optionmpls event types to
enable this. If optionmpls event types is not used, then MPLS labels will be not be included in unified2 events.

△! NOTE
By default, unified 2 files have the file creation time (in Unix Epoch format) appended to each file when it is
created.

Format

output alert_unified2: filename <base filename> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]
output log_unified2: filename <base filename> [, <limit <s ize in MB>] [, nostamp]
output unified2: filename <base file name> [, <limit <size i n MB>] [, nostamp] [, mpls_event_types]

output alert_unified2: filename snort.alert, limit 128, n ostamp
output log_unified2: filename snort.log, limit 128, nosta mp
output unified2: filename merged.log, limit 128, nostamp
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types

Figure 2.18: Unified Configuration Example

2.5.10 alertprelude

△! NOTE
support to use alertprelude is not built in by default. To use alertprelude, snort must be built with the
–enable-prelude argument passed to ./configure.

The alertprelude output plugin is used to log to a Prelude database. For more information on Prelude, seehttp://www.prelude-ids.org

Format

output alert_prelude: profile=<name of prelude profile> \
[info=<priority number for info priority alerts>] \
[low=<priority number for low priority alerts>] \
[medium=<priority number for medium priority alerts>]

output alert_prelude: profile=snort info=4 low=3 medium= 2

Figure 2.19: alertprelude configuration example

96

http://www.prelude-ids.org/

2.5.11 log null

Sometimes it is useful to be able to create rules that will alert to certain types of traffic but will not cause packet log
entries. In Snort 1.8.2, the lognull plugin was introduced. This is equivalent to using the -n command line option but
it is able to work within a ruletype.

Format

output log_null

output log_null # like using snort -n

ruletype info {
type alert
output alert_fast: info.alert
output log_null

}

Figure 2.20: Log Null Usage Example

2.5.12 alertaruba action

△! NOTE
Support to use alertarubaaction is not built in by default. To use alertarubaaction, snort must be built with
the –enable-aruba argument passed to ./configure.

Communicates with an Aruba Networks wireless mobility controller to change the status of authenticated users. This
allows Snort to take action against users on the Aruba controller to control their network privilege levels.

For more information on Aruba Networks access control, seehttp://www.arubanetworks.com/ .

Format

output alert_aruba_action: <controller address> <secret type> <secret> <action>

The following parameters are required:

controller address - Aruba mobility controller address.

secrettype - Secret type, one of ”sha1”, ”md5” or ”cleartext”.

secret - Authentication secret configured on the Aruba mobility controller with the ”aaa xml-api client” configura-
tion command, represented as a sha1 or md5 hash, or a cleartext password.

action - Action to apply to the source IP address of the traffic generating an alert.

blacklist - Blacklist the station by disabling all radio communication.

setrole:rolename - Change the userś role to the specified rolename.

97

http://www.arubanetworks.com/

output alert_aruba_action: 10.3.9.6 cleartext foobar set role:quarantine_role

Figure 2.21: Aruba Action Alert Configuration

2.6 Host Attribute Table

Starting with version 2.8.1, Snort has the capability to useinformation from an outside source to determine both the
protocol for use with Snort rules, and IP-Frag policy (see section 2.1.1) and TCP Stream reassembly policies (see
section 2.1.2). This information is stored in an attribute table, which is loaded at startup. The table is re-read during
run time upon receipt of signal number 30.

Snort associates a given packet with its attribute data fromthe table, if applicable.

For rule evaluation, service information is used instead ofthe ports when the protocol metadata in the rule matches the
service corresponding to the traffic. If the rule doesn’t have protocol metadata, or the traffic doesn’t have any matching
service information, the rule relies on the port information.

△! NOTE
To use a host attribute table, Snort must be configured with the –enable-targetbased flag.

2.6.1 Configuration Format

attribute_table filename <path to file>

2.6.2 Attribute Table File Format

The attribute table uses an XML format and consists of two sections, a mapping section, used to reduce the size of the
file for common data elements, and the host attribute section. The mapping section is optional.

An example of the file format is shown below.

<SNORT_ATTRIBUTES>
<ATTRIBUTE_MAP>

<ENTRY>
<ID>1</ID>
<VALUE>Linux</VALUE>

</ENTRY>
<ENTRY>

<ID>2</ID>
<VALUE>ssh</VALUE>

</ENTRY>
</ATTRIBUTE_MAP>
<ATTRIBUTE_TABLE>

<HOST>
<IP>192.168.1.234</IP>
<OPERATING_SYSTEM>

<NAME>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>

</NAME>
<VENDOR>

<ATTRIBUTE_VALUE>Red Hat</ATTRIBUTE_VALUE>
<CONFIDENCE>99</CONFIDENCE>

</VENDOR>

98

<VERSION>
<ATTRIBUTE_VALUE>2.6</ATTRIBUTE_VALUE>
<CONFIDENCE>98</CONFIDENCE>

</VERSION>
<FRAG_POLICY>linux</FRAG_POLICY>
<STREAM_POLICY>linux</STREAM_POLICY>

</OPERATING_SYSTEM>
<SERVICES>

<SERVICE>
<PORT>

<ATTRIBUTE_VALUE>22</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</PORT>
<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>
<PROTOCOL>

<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>

</PROTOCOL>
<APPLICATION>

<ATTRIBUTE_ID>OpenSSH</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
<VERSION>

<ATTRIBUTE_VALUE>3.9p1</ATTRIBUTE_VALUE>
<CONFIDENCE>93</CONFIDENCE>

</VERSION>
</APPLICATION>

</SERVICE>
<SERVICE>

<PORT>
<ATTRIBUTE_VALUE>23</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</PORT>
<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>
<PROTOCOL>

<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</PROTOCOL>
<APPLICATION>

<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>50</CONFIDENCE>

</APPLICATION>
</SERVICE>

</SERVICES>
<CLIENTS>

<CLIENT>
<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>
<PROTOCOL>

<ATTRIBUTE_ID>http</ATTRIBUTE_ID>

99

<CONFIDENCE>91</CONFIDENCE>
</PROTOCOL>
<APPLICATION>

<ATTRIBUTE_ID>IE Http Browser</ATTRIBUTE_ID>
<CONFIDENCE>90</CONFIDENCE>
<VERSION>

<ATTRIBUTE_VALUE>6.0</ATTRIBUTE_VALUE>
<CONFIDENCE>89</CONFIDENCE>

</VERSION>
</APPLICATION>

</CLIENT>
</CLIENTS>

</HOST>
</ATTRIBUTE_TABLE>

</SNORT_ATTRIBUTES>

△! NOTE
With Snort 2.8.1, for a given host entry, the stream and IP frag information are both used. Of the service
attributes, only the IP protocol (tcp, udp, etc), port, and protocol (http, ssh, etc) are used. The application
and version for a given service attribute, and any client attributes are ignored. They will be used in a future
release.

A DTD for verification of the Host Attribute Table XML file is provided with the snort packages.

2.7 Dynamic Modules

Dynamically loadable modules were introduced with Snort 2.6. They can be loaded via directives insnort.conf or
via command-line options.

△! NOTE
To use dynamic modules, Snort must be configured with the –enable-dynamicplugin flag.

2.7.1 Format

<directive> <parameters>

2.7.2 Directives

100

Table 2.13: Dynamic Directives

Directive Syntax Description

dynamicpreprocessor dynamicpreprocessor [file
<shared library path > |
directory <directory of shared
libraries >]

Tells snort to load the dynamic prepro-
cessor shared library (if file is used)
or all dynamic preprocessor shared
libraries (if directory is used). Specify
’file’, followed by the full or relative
path to the shared library. Or, specify
’directory’, followed by the full or
relative path to a directory of prepro-
cessor shared libraries. (Same effect
as --dynamic-preprocessor-lib or
--dynamic-preprocessor-lib-dir
options). See chapter 5 for more in-
formation on dynamic preprocessor
libraries.

dynamicengine dynamicengine [file <shared
library path > | directory
<directory of shared
libraries >]

Tells snort to load the dynamic engine
shared library (if file is used) or all
dynamic engine shared libraries (if di-
rectory is used). Specify ’file’, followed
by the full or relative path to the shared
library. Or, specify ’directory’, followed
by the full or relative path to a directory
of preprocessor shared libraries. (Same
effect as --dynamic-engine-lib or
--dynamic-preprocessor-lib-dir
options). See chapter 5 for more
information on dynamic engine libraries.

dynamicdetection dynamicdetection [file
<shared library path > |
directory <directory of shared
libraries >]

Tells snort to load the dynamic de-
tection rules shared library (if file is
used) or all dynamic detection rules
shared libraries (if directory is used).
Specify ’file’, followed by the full or
relative path to the shared library. Or,
specify ’directory’, followed by the
full or relative path to a directory of
detection rules shared libraries. (Same
effect as --dynamic-detection-lib
or --dynamic-detection-lib-dir
options). See chapter 5 for more in-
formation on dynamic detection rules
libraries.

101

Chapter 3

Writing Snort Rules: How to Write Snort
Rules and Keep Your Sanity

3.1 The Basics

Snort uses a simple, lightweight rules description language that is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rules.

Most Snort rules are written in a single line. This was required in versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslash\ to the end of the line.

Snort rules are divided into two logical sections, the rule header and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP addresses and netmasks, and the source and destination ports
information. The rule option section contains alert messages and information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figure 3.1 illustrates a sample Snort rule.

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a 5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule

The text up to the first parenthesis is the rule header and the section enclosed in parenthesis contains the rule options.
The words before the colons in the rule options section are called optionkeywords.

△! NOTE
Note that the rule options section is not specifically required by any rule, they are just used for the sake of
making tighter definitions of packets to collect or alert on (or drop, for that matter).

All of the elements in that make up a rule must be true for the indicated rule action to be taken. When taken together,
the elements can be considered to form a logicalAND statement. At the same time, the various rules in a Snort rules
library file can be considered to form a large logicalOR statement.

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the who, where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicated in the rule should show up. The first item in a rule is the rule

102

action. The rule action tells Snort what to do when it finds a packet that matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, and dynamic. In addition, if you are running Snort in inline mode,
you have additional options which include drop, reject, andsdrop.

1. alert - generate an alert using the selected alert method,and then log the packet

2. log - log the packet

3. pass - ignore the packet

4. activate - alert and then turn on another dynamic rule

5. dynamic - remain idle until activated by an activate rule ,then act as a log rule

6. drop - make iptables drop the packet and log the packet

7. reject - make iptables drop the packet, log it, and then send a TCP reset if the protocol is TCP or an ICMP port
unreachable message if the protocol is UDP.

8. sdrop - make iptables drop the packet but do not log it.

You can also define your own rule types and associate one or more output plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious
{

type log
output log_tcpdump: suspicious.log

}

This example will create a rule type that will log to syslog and a MySQL database:

ruletype redalert
{

type alert
output alert_syslog: LOG_AUTH LOG_ALERT
output database: log, mysql, user=snort dbname=snort host =localhost

}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protocols that Snort currently analyzes for suspicious behavior
– TCP, UDP, ICMP, and IP. In the future there may be more, such as ARP, IGRP, GRE, OSPF, RIP, IPX, etc.

3.2.3 IP Addresses

The next portion of the rule header deals with the IP address and port information for a given rule. The keyword any
may be used to define any address. Snort does not have a mechanism to provide host name lookup for the IP address
fields in the rules file. The addresses are formed by a straightnumeric IP address and a CIDR[3] block. The CIDR
block indicates the netmask that should be applied to the rule’s address and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C network,/16 a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR combination 192.168.1.0/24 would signify the block of addresses
from 192.168.1.1 to 192.168.1.255. Any rule that used this designation for, say, the destination address would match
on any address in that range. The CIDR designations give us a nice short-hand way to designate large address spaces
with just a few characters.

103

In Figure 3.1, the source IP address was set to match for any computer talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addresses, the negation operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP address.The negation operator is indicated with a !. For example,
an easy modification to the initial example is to make it alerton any traffic that originates outside of the local net with
the negation operator as shown in Figure 3.2.

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content: "|00 01 86 a5|"; msg: "external mountd access";)

Figure 3.2: Example IP Address Negation Rule

This rule’s IP addresses indicate any tcp packet with a source IP address not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is specified by enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time being, the IP list may not include spaces between the addresses.
See Figure 3.3 for an example of an IP list in action.

alert tcp ![192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content: "|00 01 86 a5| "; \
msg: "external mountd access";)

Figure 3.3: IP Address Lists

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, including any ports, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literallyany port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 for http, etc. Port ranges are indicated with the range operator
:. The range operator may be applied in a number of ways to takeon different meanings, such as in Figure 3.4.

log udp any any -> 192.168.1.0/24 1:1024 log udp
traffic coming from any port and destination ports ranging from 1 to 1024

log tcp any any -> 192.168.1.0/24 :6000

log tcp traffic from any port going to ports less than or equal to 6000

log tcp any :1024 -> 192.168.1.0/24 500:

log tcp traffic from privileged ports less than or equal to 1024 going to ports greater than or equal to 500

Figure 3.4: Port Range Examples

Port negation is indicated by using the negation operator !.The negation operator may be applied against any of the
other rule types (except any, which would translate to none,how Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you could do something like the rule in Figure 3.5.

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation

104

3.2.5 The Direction Operator

The direction operator -> indicates the orientation, or direction, of the traffic thatthe rule applies to. The IP address
and port numbers on the left side of the direction operator isconsidered to be the traffic coming from the source
host, and the address and port information on the right side of the operator is the destination host. There is also a
bidirectional operator, which is indicated with a<> symbol. This tells Snort to consider the address/port pairsin
either the source or destination orientation. This is handyfor recording/analyzing both sides of a conversation, suchas
telnet or POP3 sessions. An example of the bidirectional operator being used to record both sides of a telnet session is
shown in Figure 3.6.

Also, note that there is no<- operator. In Snort versions before 1.8.7, the direction operator did not have proper
error checking and many people used an invalid token. The reason the<- does not exist is so that rules always read
consistently.

log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

3.2.6 Activate/Dynamic Rules

△! NOTE
Activate and Dynamic rules are being phased out in favor of a combination of tagging (3.7.5) and flowbits
(3.6.10).

Activate/dynamic rule pairs give Snort a powerful capability. You can now have one rule activate another when it’s
action is performed for a set number of packets. This is very useful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules act just like alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, but they have a different option field: activatedby. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell Snort to adda rule when a specific network event occurs. Dynamic rules
are just like log rules except are dynamically enabled when the activate rule id goes off.

Put ’em together and they look like Figure 3.7.

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags: PA; \
content: "|E8C0FFFFFF|/bin"; activates: 1; \
msg: "IMAP buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count: 50;)

Figure 3.7: Activate/Dynamic Rule Example

These rules tell Snort to alert when it detects an IMAP bufferoverflow and collect the next 50 packets headed for port
143 coming from outside $HOMENET headed to $HOMENET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be contained within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in collecting those packets for later analysis.

105

3.3 Rule Options

Rule options form the heart of Snort’s intrusion detection engine, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using the semicolon (;) character. Rule option keywords are separated
from their arguments with a colon (:) character.

There are four major categories of rule options.

general These options provide information about the rule but do not have any affect during detection

payload These options all look for data inside the packet payload andcan be inter-related

non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen after a rule has “fired.”

3.4 General Rule Options

3.4.1 msg

The msg rule option tells the logging and alerting engine themessage to print along with a packet dump or to an alert.
It is a simple text string that utilizes the\ as an escape character to indicate a discrete character thatmight otherwise
confuse Snort’s rules parser (such as the semi-colon ; character).

Format

msg: "<message text>";

3.4.2 reference

The reference keyword allows rules to include references toexternal attack identification systems. The plugin currently
supports several specific systems as well as unique URLs. This plugin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a look athttp://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing
descriptions of alerts based on of the sid (See Section 3.4.4).

Table 3.1: Supported Systems

System URL Prefix

bugtraq http://www.securityfocus.com/bid/
cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=

nessus http://cgi.nessus.org/plugins/dump.php3?id=
arachnids (currently down) http://www.whitehats.com/info/IDS
mcafee http://vil.nai.com/vil/dispVirus.asp?virusk=

url http://

Format

reference: <id system>,<id>; [reference: <id system>,<id >;]

106

http://www.snort.org/pub-bin/sigs-search.cgi/

alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio"; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids ,IDS411;)

alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-veng lin-linux"; \
flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \
reference:arachnids,IDS287; reference:bugtraq,1387; \
reference:cve,CAN-2000-1574;)

Figure 3.8: Reference Usage Examples

3.4.3 gid

The gid keyword (generator id) is used to identify what part of Snortgenerates the event when a particular rule
fires. For example gid 1 is associated with the rules subsystem and various gids over 100 are designated for specific
preprocessors and the decoder. See etc/generators in the source tree for the current generator ids in use. Note that the
gid keyword is optional and if it is not specified in a rule, it will default to 1 and the rule will be part of the general rule
subsystem. To avoid potential conflict with gids defined in Snort (that for some reason aren’t noted it etc/generators),
it is recommended that a value greater than 1,000,000 be used. For general rule writing, it is not recommended that
thegid keyword be used. This option should be used with thesid keyword. (See section 3.4.4)

The file etc/gen-msg.map contains contains more information on preprocessor and decoder gids.

Format

gid: <generator id>;

Example

This example is a rule with a generator id of 1000001.

alert tcp any any -> any 80 (content:"BOB"; gid:1000001; sid :1; rev:1;)

3.4.4 sid

The sid keyword is used to uniquely identify Snort rules. This information allows output plugins to identify rules
easily. This option should be used with therev keyword. (See section 3.4.5)

• <100 Reserved for future use

• 100-1,000,000 Rules included with the Snort distribution

• >1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messages to Snort rule IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid: <snort rules id>;

107

Example

This example is a rule with the Snort Rule ID of 1000983.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev :1;)

3.4.5 rev

The rev keyword is used to uniquely identify revisions of Snort rules. Revisions, along with Snort rule id’s, allow
signatures and descriptions to be refined and replaced with updated information. This option should be used with the
sid keyword. (See section 3.4.4)

Format

rev: <revision integer>;

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev :1;)

3.4.6 classtype

Theclasstype keyword is used to categorize a rule as detecting an attack that is part of a more general type of attack
class. Snort provides a default set of attack classes that are used by the default set of rules it provides. Defining
classifications for rules provides a way to better organize the event data Snort produces.

Format

classtype: <class name>;

Attack classifications defined by Snort reside in theclassification.config file. The file uses the following syntax:

config classification: <class name>,<class description> ,<default priority>

These attack classifications are listed in Table 3.2. They are currently ordered with 3 default priorities. A priority of1
(high) is the most severe and 3 (low) is the least severe.

Table 3.2: Snort Default Classifications

Classtype Description Priority

attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
kickass-porn SCORE! Get the lotion! high
policy-violation Potential Corporate Privacy Violation high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high

108

web-application-attack Web Application Attack high
attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username and

password
medium

denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard protocol or eventmedium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious user-

name was detected
medium

system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web appli-

cation
medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize: >128; classtype:attempted-admin; priority:10);

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon ;)

Figure 3.9: Example Classtype Rules

Warnings

The classtype option can only use classifications that have been defined insnort.conf by using theconfig
classification option. Snort provides a default set of classifications inclassification.config that are used
by the rules it provides.

3.4.7 priority

The priority tag assigns a severity level to rules. Aclasstype rule assigns a default priority (defined by the
config classification option) that may be overridden with a priority rule. For an example in conjunction with a
classification rule refer to Figure 3.9. For use by itself, see Figure 3.10

109

Format

priority: <priority integer>;

alert TCP any any -> any 80 (msg: "WEB-MISC phf attempt"; flag s:A+; \
content: "/cgi-bin/phf"; priority:10;)

Figure 3.10: Example Priority Rule

3.4.8 metadata

Themetadata tag allows a rule writer to embed additional information about the rule, typically in a key-value format.
Certain metadata keys and values have meaning to Snort and are listed in Table 3.3. Keys other than those listed in the
table are effectively ignored by Snort and can be free-form,with a key and a value. Multiple keys are separated by a
comma, while keys and values are separated by a space.

Table 3.3: Snort Metadata Keys

Key Description Value Format

engine Indicate a Shared Library Rule ”shared”
soid Shared Library Rule Generator and SID gid|sid
service Target-Based Service Identifier ”http”

△! NOTE
The service Metadata Key is only meaningful when a Host Atttribute Tableis provided. When the value
exactly matches the service ID as specified in the table, the rule is applied to that packet, otherwise, the rule
is not applied (even if the ports specified in the rule match).See Section 2.6 for details on the Host Attribute
Table.

.

Format

The examples in Figure 3.11 show an stub rule from a shared library rule. The first uses multiple metadata keywords,
the second a single metadata keyword, with keys separated bycommas.

metadata: key1 value1;
metadata: key1 value1, key2 value2;

alert tcp any any -> any 80 (msg: "Shared Library Rule Example "; metadata:engine shared; metadata:soid 3|12345;)
alert tcp any any -> any 80 (msg: "Shared Library Rule Example "; metadata:engine shared, soid 3|12345;)
alert tcp any any -> any 80 (msg: "HTTP Service Rule Example"; metadata:service http;)

Figure 3.11: Example Metadata Rule

3.4.9 General Rule Quick Reference

110

Table 3.4: General rule option keywords

Keyword Description
msg The msg keyword tells the logging and alerting engine the message to print with the packet

dump or alert.
reference The reference keyword allows rules to include references toexternal attack identification

systems.
gid The gid keyword (generator id) is used to identify what part of Snort generates the event

when a particular rule fires.
sid The sid keyword is used to uniquely identify Snort rules.
rev The rev keyword is used to uniquely identify revisions of Snort rules.
classtype The classtype keyword is used to categorize a rule as detecting an attack that is part of a

more general type of attack class.
priority The priority keyword assigns a severity level to rules.
metadata The metadata keyword allows a rule writer to embed additional information about the rule,

typically in a key-value format.

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important features of Snort. It allows the user to set rules that search for
specific content in the packet payload and trigger response based on that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match functionis called and the (rather computationally expensive) test
is performed against the packet contents. If data exactly matching the argument data string is contained anywhere
within the packet’s payload, the test is successful and the remainder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat complex;it can contain mixed text and binary data. The binary
data is generally enclosed within the pipe (|) character and represented as bytecode. Bytecode represents binary data
as hexadecimal numbers and is a good shorthand method for describing complex binary data. Figure 3.12 contains an
example of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one rule.This allows rules to be tailored for less false positives.

If the rule is preceded by a! , the alert will be triggered on packets that do not contain this content. This is useful when
writing rules that want to alert on packets that do not match acertain pattern

△! NOTE
Also note that the following characters must be escaped inside a content rule:
: ; \ "

Format

content: [!] "<content string>";

111

alert tcp any any -> any 139 (content:"|5c 00|P|00|I|00|P|0 0|E|00 5c|";)

Figure 3.12: Mixed Binary Bytecode and Text in a ’content’ keyword

alert tcp any any -> any 80 (content:!"GET";)

Figure 3.13: Negation Example

Example

△! NOTE
A ! modifier negates the results of the entire content search, modifiers included. For example, if using
content:!"A"; within:50; and there are only 5 bytes of payload and there is no ”A” in those 5 bytes, the
result will return a match. If there must be 50 bytes for a valid match, useisdataat as a pre-cursor to the
content.

Changing content behavior

Thecontent keyword has a number of modifier keywords. The modifier keywords change how the previously speci-
fied content works. These modifier keywords are:

Table 3.5: Content Modifiers

Modifier Section

nocase 3.5.2
rawbytes 3.5.3
depth 3.5.4
offset 3.5.5
distance 3.5.6
within 3.5.7
http client body 3.5.8
http cookie 3.5.9
http header 3.5.10
http method 3.5.11
http uri 3.5.12
fast pattern 3.5.13

3.5.2 nocase

The nocase keyword allows the rule writer to specify that theSnort should look for the specific pattern, ignoring case.
nocase modifies the previous ’content’ keyword in the rule.

Format

nocase;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER ro ot"; nocase;)

Figure 3.14: Content rule with nocase modifier
112

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packet data, ignoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous content 3.5.1 option.

format

rawbytes;

Example

This example tells the content pattern matcher to look at theraw traffic, instead of the decoded traffic provided by the
Telnet decoder.

alert tcp any any -> any 21 (msg: "Telnet NOP"; content: "|FF F 1|"; rawbytes;)

3.5.4 depth

The depth keyword allows the rule writer to specify how far into a packet Snort should search for the specified pattern.
depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look for the specified pattern within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previous ‘content’ keyword, there must be a content in the rule before ‘depth’
is specified.

See Figure 3.15 for an example of a combined content, offset,and depth search rule.

Format

depth: <number>;

3.5.5 offset

The offset keyword allows the rule writer to specify where tostart searching for a pattern within a packet. offset
modifies the previous ’content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the specified pattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’offset’ is
specified.

See Figure 3.15 for an example of a combined content, offset,and depth search rule.

Format

offset: <number>;

alert tcp any any -> any 80 (content: "cgi-bin/phf"; offset: 4; depth:20;)

Figure 3.15: Combined Content, Offset and Depth Rule. Skip the first 4 bytes, and look for cgi-bin/phf in the next 20
bytes

113

3.5.6 distance

The distance keyword allows the rule writer to specify how far into a packet Snort should ignore before starting to
search for the specified pattern relative to the end of the previous pattern match.

This can be thought of as exactly the same thing as offset (SeeSection 3.5.5), except it is relative to the end of the last
pattern match instead of the beginning of the packet.

Format

distance: <byte count>;

Example

The rule listed in Figure 3.16 maps to a regular expression of/ABCDE.{1}EFGH/.

alert tcp any any -> any any (content:"ABC"; content: "DEF"; distance:1;)

Figure 3.16: distance usage example

3.5.7 within

The within keyword is a content modifier that makes sure that at most N bytes are between pattern matches using the
content keyword (See Section 3.5.1). It’s designed to be used in conjunction with the distance (Section 3.5.6) rule
option.

The rule listed in Figure 3.17 constrains the search to not gopast 10 bytes past the ABCDE match.

Format

within: <byte count>;

Examples

alert tcp any any -> any any (content:"ABC"; content: "EFG"; within:10;)

Figure 3.17: within usage example

3.5.8 http client body

The httpclient body keyword is a content modifier that restricts the search to the NORMALIZED body of an HTTP
client request.

The rule listed in Figure 3.18 constrains the search for the pattern ”EFG” to the NORMALIZED body of an HTTP
client request.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’httpclient body’
is specified.

Format

http_client_body;

114

Examples

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_client_body;)

Figure 3.18: httpclient body usage example

△! NOTE
Thehttp client body modifier is not allowed to be used with therawbytes modifier for the same content.

3.5.9 http cookie

The httpcookie keyword is a content modifier that restricts the search to the extracted Cookie Header field of an HTTP
client request.

The rule listed in Figure 3.19 constrains the search for the pattern ”EFG” to the extracted Cookie Header field of an
HTTP client request.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’httpcookie’
is specified.

The extracted Cookie Header field may be NORMALIZED, per the configuration of HttpInspect (see 2.1.6).

Format

http_cookie;

Examples

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_cookie;)

Figure 3.19: httpcookie usage example

△! NOTE
Thehttp cookie modifier is not allowed to be used with therawbytes or fast pattern modifiers for the
same content.

3.5.10 http header

The httpheader keyword is a content modifier that restricts the search to the extracted Header fields of an HTTP client
request.

The rule listed in Figure 3.20 constrains the search for the pattern ”EFG” to the extracted Header fields of an HTTP
client request.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’httpheader’
is specified.

The extracted Header fields may be NORMALIZED, per the configuration of HttpInspect (see 2.1.6).

Format

http_header;

115

Examples

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_header;)

Figure 3.20: httpheader usage example

△! NOTE
Thehttp header modifier is not allowed to be used with therawbytes modifier for the same content.

3.5.11 http method

The httpmethod keyword is a content modifier that restricts the search to the extracted Method from an HTTP client
request.

The rule listed in Figure 3.21 constrains the search for the pattern ”GET” to the extracted Method from an HTTP client
request.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’httpmethod’
is specified.

Format

http_method;

Examples

alert tcp any any -> any 80 (content:"ABC"; content: "GET"; h ttp_method;)

Figure 3.21: httpmethod usage example

△! NOTE
Thehttp method modifier is not allowed to be used with therawbytes modifier for the same content.

3.5.12 http uri

The httpuri keyword is a content modifier that restricts the search tothe NORMALIZED request URI field . Using a
content rule option followed by a httpuri modifier is the same as using a uricontent by itself (see: 3.5.14).

The rule listed in Figure 3.22 constrains the search for the pattern ”EFG” to the NORMALIZED URI.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’httpuri’
is specified.

Format

http_uri;

116

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_uri;)

Figure 3.22: httpuri usage example

Examples

△! NOTE
Thehttp uri modifier is not allowed to be used with therawbytes modifier for the same content.

3.5.13 fastpattern

The fastpattern keyword is a content modifier that sets the content within a rule to be used with the Fast Pattern
Matcher. It overrides the default of using the longest content within the rule.

fast pattern may be specified at most once for each of the buffer modifiers (excluding the httpcookie modifier).

The rule listed in Figure 3.23 causes the pattern ”EFG” to be used with the Fast Pattern Matcher, even though it is
shorter than the earlier pattern ”ABCD”.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’fastpattern’
is specified.

Format

fast_pattern;

Examples

alert tcp any any -> any 80 (content:"ABCD"; content: "EFG"; fast_pattern;)

Figure 3.23: fastpattern usage example

△! NOTE
The fast pattern modifier is not allowed to be used with thehttp cookie modifier for the same content,
nor with a content that is negated with a! .

3.5.14 uricontent

Theuricontent keyword in the Snort rule language searches the NORMALIZED request URI field. This means that
if you are writing rules that include things that are normalized, such as %2f or directory traversals, these rules will not
alert. The reason is that the things you are looking for are normalized out of the URI buffer.

For example, the URI:

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:

/winnt/system32/cmd.exe?/c+ver

Another example, the URI:

117

/cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%252fp%68f?

will get normalized into:

/cgi-bin/phf?

When writing auricontent rule, write the content that you want to find in the context that the URI will be normalized.
For example, if Snort normalizes directory traversals, do not include directory traversals.

You can write rules that look for the non-normalized contentby using the content option. (See Section 3.5.1)

For a description of the parameters to this function, see thecontent rule options in Section 3.5.1.

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.1.6.

Format

uricontent:[!]<content string>;

△! NOTE
uricontent cannot be modified by arawbytes modifier.

3.5.15 urilen

Theurilen keyword in the Snort rule language specifies the exact length, the minimum length, the maximum length,
or range of URI lengths to match.

Format

urilen: int<>int;
urilen: [<,>] <int>;

The following example will match URIs that are 5 bytes long:

urilen: 5

The following example will match URIs that are shorter than 5bytes:

urilen: < 5

The following example will match URIs that are greater than 5bytes and less than 10 bytes:

urilen: 5<>10

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.1.6.

3.5.16 isdataat

Verify that the payload has data at a specified location, optionally looking for data relative to the end of the previous
content match.

118

Format

isdataat:<int>[,relative];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,r elative; \
content:!"|0a|"; distance:0;)

This rule looks for the string PASS exists in the packet, thenverifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline character within 50 bytes of the end of the PASS string.

3.5.17 pcre

The pcre keyword allows rules to be written using perl compatible regular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE web site http://www.pcre.org

Format

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEG RUB]";

The post-re modifiers set compile time flags for the regular expression.

Table 3.6: Perl compatible modifiers

i case insensitive
s include newlines in the dot metacharacter
m By default, the string is treated as one big line of characters. ˆ

and $ match at the beginning and ending of the string. When
m is set, ˆ and $ match immediately following or immediately
before any newline in the buffer, as well as the very start and
very end of the buffer.

x whitespace data characters in the pattern are ignored except
when escaped or inside a character class

Table 3.7: PCRE compatible modifiers

A the pattern must match only at the start of the buffer (same asˆ
)

E Set $ to match only at the end of the subject string. Without E,
$ also matches immediately before the final character if it isa
newline (but not before any other newlines).

G Inverts the ”greediness” of the quantifiers so that they are not
greedy by default, but become greedy if followed by ”?”.

Table 3.8: Snort specific modifiers

R Match relative to the end of the last pattern match. (Similarto
distance:0;)

U Match the decoded URI buffers (Similar touricontent)
P Match normalized HTTP request body (Similar touricontent)
B Do not use the decoded buffers (Similar to rawbytes)

119

http://www.pcre.org

O Override the configured pcre match limit for this expression

The modifiers R and B should not be used together.

Example

This example performs a case-insensitive search for the string BLAH in the payload.

alert ip any any -> any any (pcre:"/BLAH/i";)

△! NOTE
Snort’s handling of multiple URIs with PCRE does not work as expected. PCRE when used without a
uricontent only evaluates the first URI. In order to use pcre to inspect all URIs, you must use either a
content or a uricontent.

3.5.18 bytetest

Test a byte field against a specific value (with operator). Capable of testing binary values or converting representative
byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read Section 3.11.5.

Format

byte_test: <bytes to convert>, [!]<operator>, <value>, <o ffset> \
[,relative] [,<endian>] [,<number type>, string];

120

Option Description

bytes to convert Number of bytes to pick up from the packet
operator Operation to perform to test the value:

• < - less than

• > - greater than

• = - equal

• ! - not

• & - bitwise AND

• ˆ - bitwise OR

value Value to test the converted value against
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
endian Endian type of the number being read:

• big - Process data as big endian (default)

• little - Process data as little endian

string Data is stored in string format in packet
number type Type of number being read:

• hex - Converted string data is represented in hexadecimal

• dec - Converted string data is represented in decimal

• oct - Converted string data is represented in octal

dce Let the DCE/RPC 2 preprocessor determine the byte order of the value to be converted.
See section 2.1.14 for a description and examples (2.1.14 for quick reference).

Any of the operators can also include! to check if the operator is not true. If! is specified without an operator, then
the operator is set to= .

△! NOTE
Snort uses the C operators for each of these operators. If the& operator is used, then it would be the same as
usingif (data & value){ do something();}

3.5.19 bytejump

The byte jump keyword allows rules to be written for length encoded protocols trivially. By having an option that
reads the length of a portion of data, then skips that far forward in the packet, rules can be written that skip over
specific portions of length-encoded protocols and perform detection in very specific locations.

Thebyte jump option does this by reading some number of bytes, convert them to their numeric representation, move
that many bytes forward and set a pointer for later detection. This pointer is known as the detect offset end pointer, or
doeptr.

For a more detailed explanation, please read Section 3.11.5.

Format

byte_jump: <bytes_to_convert>, <offset> \

121

alert udp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4,>, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4, >,1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test: 4, =, 1234, 0, string, dec; \
msg: "got 1234!";)

alert udp any any -> any 1235 \
(byte_test: 3, =, 123, 0, string, dec; \
msg: "got 123!";)

alert udp any any -> any 1236 \
(byte_test: 2, =, 12, 0, string, dec; \
msg: "got 12!";)

alert udp any any -> any 1237 \
(byte_test: 10, =, 1234567890, 0, string, dec; \
msg: "got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test: 8, =, 0xdeadbeef, 0, string, hex; \
msg: "got DEADBEEF!";)

Figure 3.24: Byte Test Usage Example

122

[,relative] [,multiplier <multiplier value>] [,big] [,li ttle][,string]\
[,hex] [,dec] [,oct] [,align] [,from_beginning] [,post_o ffset <adjustment value>];

Option Description

bytes to convert Number of bytes to pick up from the packet
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
multiplier <value > Multiply the number of calculated bytes by<value > and skip forward that number of

bytes.
big Process data as big endian (default)
little Process data as little endian
string Data is stored in string format in packet
hex Converted string data is represented in hexadecimal
dec Converted string data is represented in decimal
oct Converted string data is represented in octal
align Round the number of converted bytes up to the next 32-bit boundary
from beginning Skip forward from the beginning of the packet payload instead of from the current position

in the packet.
post offset <value > Skip forward or backwards (positive of negative value)by <value > number of bytes after

the other jump options have been applied.
dce Let the DCE/RPC 2 preprocessor determine the byte order of the value to be converted.

See section 2.1.14 for a description and examples (2.1.14 for quick reference).

alert udp any any -> any 32770:34000 (content: "|00 01 86 B8|" ; \
content: "|00 00 00 01|"; distance: 4; within: 4; \
byte_jump: 4, 12, relative, align; \
byte_test: 4, >, 900, 20, relative; \
msg: "statd format string buffer overflow";)

Figure 3.25: byte jump Usage Example

3.5.20 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT b ounce attempt"; \
flow:to_server,established; content:"PORT"; nocase; ft pbounce; pcre:"/ˆPORT/smi";\
classtype:misc-attack; sid:3441; rev:1;)

3.5.21 asn1

The ASN.1 detection plugin decodes a packet or a portion of a packet, and looks for various malicious encodings.

Multiple options can be used in an ’asn1’ option and the implied logic is boolean OR. So if any of the arguments
evaluate as true, the whole option evaluates as true.

123

The ASN.1 options provide programmatic detection capabilities as well as some more dynamic type detection. If an
option has an argument, the option and the argument are separated by a space or a comma. The preferred usage is to
use a space between option and argument.

Format

asn1: option[argument][, option[argument]] . . .

Option Description
bitstring overflow Detects invalid bitstring encodings that are known to be remotely exploitable.
double overflow Detects a double ASCII encoding that is larger than a standard buffer. This is known to be

an exploitable function in Microsoft, but it is unknown at this time which services may be
exploitable.

oversize length <value > Compares ASN.1 type lengths with the supplied argument. Thesyntax looks like, “over-
size length 500”. This means that if an ASN.1 type is greater than 500, then this keyword
is evaluated as true. This keyword must have one argument which specifies the length to
compare against.

absolute offset <value > This is the absolute offset from the beginning of the packet.For example, if you wanted
to decode snmp packets, you would say “absoluteoffset 0”. absolute offset has one
argument, the offset value. Offset may be positive or negative.

relative offset <value > This is the relative offset from the last content match or byte test/jump.relative offset
has one argument, the offset number. So if you wanted to startdecod-
ing and ASN.1 sequence right after the content “foo”, you would specify
’content:"foo"; asn1: bitstring_overflow, relative_off set 0’ . Offset val-
ues may be positive or negative.

Examples

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \
asn1: oversize_length 10000, absolute_offset 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content :"foo"; \
asn1: bitstring_overflow, relative_offset 0;)

3.5.22 cvs

The CVS detection plugin aids in the detection of: Bugtraq-10384, CVE-2004-0396: ”Malformed Entry Modified and
Unchanged flag insertion”. Default CVS server ports are 2401and 514 and are included in the default ports for stream
reassembly.

△! NOTE
This plugin cannot do detection over encrypted sessions, e.g. SSH (usually port 22).

Format

cvs:<option>;

Option Description

invalid-entry Looks for an invalid Entry string, which is a way of causing a heap overflow (see CVE-
2004-0396) and bad pointer derefenece in versions of CVS 1.11.15 and before.

124

Examples

alert tcp any any -> any 2401 (msg:"CVS Invalid-entry"; \
flow:to_server,established; cvs:invalid-entry;)

3.5.23 dceiface

See the DCE/RPC 2 Preprocessor section 2.1.14 for a description and examples of using this rule option.

3.5.24 dceopnum

See the DCE/RPC 2 Preprocessor section 2.1.14 for a description and examples of using this rule option.

3.5.25 dcestub data

See the DCE/RPC 2 Preprocessor section 2.1.14 for a description and examples of using this rule option.

3.5.26 Payload Detection Quick Reference

Table 3.9: Payload detection rule option keywords

Keyword Description
content The content keyword allows the user to set rules that search for specific content in the

packet payload and trigger response based on that data.
rawbytes The rawbytes keyword allows rules to look at the raw packet data, ignoring any decoding

that was done by preprocessors.
depth The depth keyword allows the rule writer to specify how far into a packet Snort should

search for the specified pattern.
offset The offset keyword allows the rule writer to specify where tostart searching for a pattern

within a packet.
distance The distance keyword allows the rule writer to specify how far into a packet Snort should

ignore before starting to search for the specified pattern relative to the end of the previous
pattern match.

within The within keyword is a content modifier that makes sure that at most N bytes are between
pattern matches using the content keyword.

uricontent The uricontent keyword in the Snort rule language searches the normalized request URI
field.

isdataat The isdataat keyword verifies that the payload has data at a specified location.
pcre The pcre keyword allows rules to be written using perl compatible regular expressions.
byte test The bytetest keyword tests a byte field against a specific value (with operator).
byte jump The bytejump keyword allows rules to read the length of a portion of data, then skip that

far forward in the packet.
ftpbounce The ftpbounce keyword detects FTP bounce attacks.
asn1 The asn1 detection plugin decodes a packet or a portion of a packet, and looks for various

malicious encodings.
cvs The cvs keyword detects invalid entry strings.
dce iface See the DCE/RPC 2 Preprocessor section 2.1.14.
dce opnum See the DCE/RPC 2 Preprocessor section 2.1.14.
dce stub data See the DCE/RPC 2 Preprocessor section 2.1.14.

125

3.6 Non-Payload Detection Rule Options

3.6.1 fragoffset

The fragoffset keyword allows one to compare the IP fragmentoffset field against a decimal value. To catch all the first
fragments of an IP session, you could use the fragbits keyword and look for the More fragments option in conjunction
with a fragoffset of 0.

Format

fragoffset:[<|>]<number>;

alert ip any any -> any any \
(msg: "First Fragment"; fragbits: M; fragoffset: 0;)

Figure 3.26: Fragoffset Usage Example

3.6.2 ttl

The ttl keyword is used to check the IP time-to-live value. This option keyword was intended for use in the detection
of traceroute attempts.

Format

ttl:[[<number>-]><=]<number>;

Example

This example checks for a time-to-live value that is less than 3.

ttl:<3;

This example checks for a time-to-live value that between 3 and 5.

ttl:3-5;

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specific value.

Format

tos:[!]<number>;

Example

This example looks for a tos value that is not 4

tos:!4;

126

3.6.4 id

The id keyword is used to check the IP ID field for a specific value. Some tools (exploits, scanners and other odd
programs) set this field specifically for various purposes, for example, the value 31337 is very popular with some
hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.

id:31337;

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option is present.

The following options may be checked:

rr - Record Route

eol - End of list

nop - No Op

ts - Time Stamp

sec - IP Security

esec - IP Extended Security

lsrr - Loose Source Routing

ssrr - Strict Source Routing

satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict and loose source routing which aren’t used in any widespread
internet applications.

Format

ipopts:<rr|eol|nop|ts|sec|esec|lsrr|ssrr|satid|any> ;

Example

This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

127

Warning

Only a single ipopts keyword may be specified per rule.

3.6.6 fragbits

The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP header.

The following bits may be checked:

M - More Fragments

D - Don’t Fragment

R - Reserved Bit

The following modifiers can be set to change the match criteria:

+ match on the specified bits, plus any others

* match if any of the specified bits are set

! match if the specified bits are not set

Format

fragbits:[+*!]<[MDR]>;

Example

This example checks if the More Fragments bit and the Do not Fragment bit are set.

fragbits:MD+;

3.6.7 dsize

The dsize keyword is used to test the packet payload size. This may be used to check for abnormally sized packets. In
many cases, it is useful for detecting buffer overflows.

Format

dsize: [<>]<number>[<><number>];

Example

This example looks for a dsize that is between 300 and 400 bytes.

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless of thesize of the payload.

128

3.6.8 flags

The flags keyword is used to check if specific TCP flag bits are present.

The following bits may be checked:

F - FIN (LSB in TCP Flags byte)

S - SYN

R - RST

P - PSH

A - ACK

U - URG

1 - Reserved bit 1 (MSB in TCP Flags byte)

2 - Reserved bit 2

0 - No TCP Flags Set

The following modifiers can be set to change the match criteria:

+ - match on the specified bits, plus any others

* - match if any of the specified bits are set

! - match if the specified bits are not set

To handle writing rules for session initiation packets suchas ECN where a SYN packet is sent with the previously
reserved bits 1 and 2 set, an option mask may be specified. A rule could check for a flags value of S,12 if one wishes
to find packets with just the syn bit, regardless of the valuesof the reserved bits.

Format

flags:[!|*|+]<FSRPAU120>[,<FSRPAU120>];

Example

This example checks if just the SYN and the FIN bits are set, ignoring reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

3.6.9 flow

The flow keyword is used in conjunction with TCP stream reassembly (see Section 2.1.2). It allows rules to only apply
to certain directions of the traffic flow.

This allows rules to only apply to clients or servers. This allows packets related to $HOMENET clients viewing web
pages to be distinguished from servers running in the $HOMENET.

The established keyword will replace theflags: A+ used in many places to show established TCP connections.

129

Options

Option Description
to client Trigger on server responses from A to B
to server Trigger on client requests from A to B
from client Trigger on client requests from A to B
from server Trigger on server responses from A to B
established Trigger only on established TCP connections
stateless Trigger regardless of the state of the stream processor (useful for packets that are designed

to cause machines to crash)
no stream Do not trigger on rebuilt stream packets (useful for dsize and stream5)
only stream Only trigger on rebuilt stream packets

Format

flow: [(established|stateless)]
[,(to_client|to_server|from_client|from_server)]
[,(no_stream|only_stream)];

alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming d etected"; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg: "Port 0 TCP traffi c"; \
flow:stateless;)

Figure 3.27: Flow usage examples

3.6.10 flowbits

Theflowbits keyword is used in conjunction with conversation tracking from the Stream preprocessor (see Section2.1.2).
It allows rules to track states across transport protocol sessions. The flowbits option is most useful for TCP sessions,
as it allows rules to generically track the state of an application protocol.

There are seven keywords associated with flowbits. Most of the options need a user-defined name for the specific
state that is being checked. This string should be limited toany alphanumeric string including periods, dashes, and
underscores.

Option Description

set Sets the specified state for the current flow.
unset Unsets the specified state for the current flow.
toggle Sets the specified state if the state is unset, otherwise unsets the state if the state is set.
isset Checks if the specified state is set.
isnotset Checks if the specified state is not set.
noalert Cause the rule to not generate an alert, regardless of the rest of the detection options.

Format

flowbits: [set|unset|toggle|isset|reset|noalert][,<S TATE_NAME>];

3.6.11 seq

The seq keyword is used to check for a specific TCP sequence number.

130

alert tcp any 143 -> any any (msg:"IMAP login";
content:"OK LOGIN"; flowbits:set,logged_in;
flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST ";
flowbits:isset,logged_in;)

Figure 3.28: Flowbits Usage Examples

Format

seq:<number>;

Example

This example looks for a TCP sequence number of 0.

seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowledgenumber.

Format

ack: <number>;

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

3.6.13 window

The window keyword is used to check for a specific TCP window size.

Format

window:[!]<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

3.6.14 itype

The itype keyword is used to check for a specific ICMP type value.

131

Format

itype:[<|>]<number>[<><number>];

Example

This example looks for an ICMP type greater than 30.

itype:>30;

3.6.15 icode

The icode keyword is used to check for a specific ICMP code value.

Format

icode: [<|>]<number>[<><number>];

Example

This example looks for an ICMP code greater than 30.

code:>30;

3.6.16 icmpid

The icmpid keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.

icmp_id:0;

3.6.17 icmpseq

The icmpseq keyword is used to check for a specific ICMP sequence value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_seq:<number>;

132

Example

This example looks for an ICMP Sequence of 0.

icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, version, and procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbers by using ’*’;

Format

rpc: <application number>, [<version number>|*], [<proce dure number>|*]>;

Example

The following example looks for an RPC portmap GETPORT request.

alert tcp any any -> any 111 (rpc: 100000,*,3;);

Warning

Because of the fast pattern matching engine, the RPC keywordis slower than looking for the RPC values by using
normal content matching.

3.6.19 ipproto

The ip proto keyword allows checks against the IP protocol header.For a list of protocols that may be specified by
name, see /etc/protocols.

Format

ip_proto:[!|>|<] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ip is the same as the destination IP.

Format

sameip;

133

Example

This example looks for any traffic where the Source IP and the Destination IP is the same.

alert ip any any -> any any (sameip;)

3.6.21 streamsize

The streamsize keyword allows a rule to match traffic according to the number of bytes observed, as determined by
the TCP sequence numbers.

△! NOTE
The streamsize option is only available when the Stream5 preprocessoris enabled.

Format

stream_size:<server|client|both|either>,<operator>, <number>

Where the operator is one of the following:

• < - less than

• > - greater than

• = - equal

• != - not

• <= - less than or equal

• >= - greater than or equal

Example

For example, to look for a session that is less that 6 bytes from the client side, use:

alert tcp any any -> any any (stream_size:client,<,6;)

3.6.22 Non-Payload Detection Quick Reference

Table 3.10: Non-payload detection rule option keywords

Keyword Description
fragoffset The fragoffset keyword allows one to compare the IP fragmentoffset field against a decimal

value.
ttl The ttl keyword is used to check the IP time-to-live value.
tos The tos keyword is used to check the IP TOS field for a specific value.
id The id keyword is used to check the IP ID field for a specific value.
ipopts The ipopts keyword is used to check if a specific IP option is present.
fragbits The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP

header.
dsize The dsize keyword is used to test the packet payload size.

134

flags The flags keyword is used to check if specific TCP flag bits are present.
flow The flow keyword allows rules to only apply to certain directions of the traffic flow.
flowbits The flowbits keyword allows rules to track states across transport protocol sessions.
seq The seq keyword is used to check for a specific TCP sequence number.
ack The ack keyword is used to check for a specific TCP acknowledgenumber.
window The window keyword is used to check for a specific TCP window size.
itype The itype keyword is used to check for a specific ICMP type value.
icode The icode keyword is used to check for a specific ICMP code value.
icmp id The icmpid keyword is used to check for a specific ICMP ID value.
icmp seq The icmpseq keyword is used to check for a specific ICMP sequence value.
rpc The rpc keyword is used to check for a RPC application, version, and procedure numbers

in SUNRPC CALL requests.
ip proto The ip proto keyword allows checks against the IP protocol header.
sameip The sameip keyword allows rules to check if the source ip is the same as the destination IP.

3.7 Post-Detection Rule Options

3.7.1 logto

The logto keyword tells Snort to log all packets that triggerthis rule to a special output log file. This is especially
handy for combining data from things like NMAP activity, HTTP CGI scans, etc. It should be noted that this option
does not work when Snort is in binary logging mode.

Format

logto:"filename";

3.7.2 session

The session keyword is built to extract user data from TCP Sessions. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions is very useful.

There are two available argument keywords for the session rule option, printable or all. The printable keyword only
prints out data that the user would normally see or be able to type.

The all keyword substitutes non-printable characters withtheir hexadecimal equivalents.

Format

session: [printable|all];

Example

The following example logs all printable strings in a telnetpacket.

log tcp any any <> any 23 (session:printable;)

135

Warnings

Using the session keyword can slow Snort down considerably,so it should not be used in heavy load situations. The
session keyword is best suited for post-processing binary (pcap) log files.

3.7.3 resp

The resp keyword is used to attempt to close sessions when an alert is triggered. In Snort, this is called flexible
response.

Flexible Response supports the following mechanisms for attempting to close sessions:

Option Description

rst snd Send TCP-RST packets to the sending socket
rst rcv Send TCP-RST packets to the receiving socket
rst all Send TCPRST packets in both directions
icmp net Send a ICMPNET UNREACH to the sender
icmp host Send a ICMPHOST UNREACH to the sender
icmp port Send a ICMPPORTUNREACH to the sender
icmp all Send all above ICMP packets to the sender

These options can be combined to send multiple responses to the target host.

Format

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mech anism>]];

Warnings

This functionality is not built in by default. Use the – –enable-flexresp flag to configure when building Snort to enable
this functionality.

Be very careful when using Flexible Response. It is quite easy to get Snort into an infinite loop by defining a rule such
as:

alert tcp any any -> any any (resp:rst_all;)

It is easy to be fooled into interfering with normal network traffic as well.

Example

The following example attempts to reset any TCP connection to port 1524.

alert tcp any any -> any 1524 (flags:S; resp:rst_all;)

3.7.4 react

This keyword implements an ability for users to react to traffic that matches a Snort rule. The basic reaction is blocking
interesting sites users want to access: New York Times, slashdot, or something really important - napster and porn
sites. The React code allows Snort to actively close offending connections and send a visible notice to the browser.
The notice may include your own comment. The following arguments (basic modifiers) are valid for this option:

• block - close connection and send the visible notice

136

The basic argument may be combined with the following arguments (additional modifiers):

• msg - include the msg option text into the blocking visible notice

• proxy<port nr> - use the proxy port to send the visible notice

Multiple additional arguments are separated by a comma. Thereact keyword should be placed as the last one in the
option list.

Format

react: block[, <react_additional_modifier>];

alert tcp any any <> 192.168.1.0/24 80 (content: "bad.htm"; \
msg: "Not for children!"; react: block, msg, proxy 8000;)

Figure 3.29: React Usage Example

Warnings

React functionality is not built in by default. This code is currently bundled under Flexible Response, so enabling
Flexible Response (–enable-flexresp) will also enable React.

Be very careful when using react. Causing a network traffic generation loop is very easy to do with this functionality.

3.7.5 tag

The tag keyword allow rules to log more than just the single packet that triggered the rule. Once a rule is triggered,
additional traffic involving the source and/or destinationhost istagged. Tagged traffic is logged to allow analysis of
response codes and post-attack traffic.taggedalerts will be sent to the same output plugins as the originalalert, but it
is the responsibility of the output plugin to properly handle these special alerts. Currently, the database output plugin,
described in Section 2.5.6, does not properly handletaggedalerts.

Format

tag: <type>, <count>, <metric>, [direction];

type

• session - Log packets in the session that set off the rule

• host - Log packets from the host that caused the tag to activate (uses [direction] modifier)

count

• <integer> - Count is specified as a number of units. Units are specified inthe<metric> field.

metric

• packets - Tag the host/session for<count> packets

• seconds - Tag the host/session for<count> seconds

• bytes - Tag the host/session for<count> bytes

direction - only relevant if host type is used.

137

• src - Tag packets containing the source IP address of the packet that generated the initial event.

• dst - Tag packets containing the destination IP address of the packet that generated the initial event.

Note, any packets that generate an alert will not be tagged. For example, it may seem that the following rule will tag
the first 600 seconds of any packet involving 10.1.1.1.

alert tcp any any <> 10.1.1.1 any (tag:host,600,seconds,sr c;)

However, since the rule will fire on every packet involving 10.1.1.1, no packets will get tagged. Theflowbitsoption
would be useful here.

alert tcp any any <> 10.1.1.1 any (flowbits:isnotset,tagge d;
flowbits:set,tagged; tag:host,600,seconds,src;)

Also note that if you have a tag option in a rule that uses a metric other thanpackets , a tagged packet limit will
be used to limit the number of tagged packets regardless of whether theseconds or bytes count has been reached.
The defaulttagged packet limit value is 256 and can be modified by using a config option in your snort.conf file
(see Section 2.0.3 on how to use thetagged packet limit config option). You can disable this packet limit for
a particular rule by adding apackets metric to your tag option and setting its count to 0 (This can be done on a
global scale by setting thetagged packet limit option in snort.conf to 0). Doing this will ensure that packets are
tagged for the full amount ofseconds or bytes and will not be cut off by thetagged packet limit . (Note that the
tagged packet limit was introduced to avoid DoS situations on high bandwidth sensors for tag rules with a high
seconds or bytes counts.)

alert tcp 10.1.1.4 any -> 10.1.1.1 any (content:"TAGMYPACK ETS"; tag:host,0,packets,600,seconds,src;)

Example

This example logs the first 10 seconds or thetagged packet limit (whichever comes first) of any telnet session.

alert tcp any any -> any 23 (flags:s,12; tag:session,10,sec onds;)

3.7.6 activates

The activates keyword allows the rule writer to specify a rule to add when a specific network event occurs. See
Section 3.2.6 for more information.

Format

activates: 1;

3.7.7 activatedby

Theactivated by keyword allows the rule writer to dynamically enable a rule when a specific activate rule is trig-
gered. See Section 3.2.6 for more information.

Format

activated_by: 1;

138

3.7.8 count

Thecount keyword must be used in combination with theactivated by keyword. It allows the rule writer to specify
how many packets to leave the rule enabled for after it is activated. See Section 3.2.6 for more information.

Format

activated_by: 1; count: 50;

3.7.9 Post-Detection Quick Reference

Table 3.11: Post-detection rule option keywords

Keyword Description
logto The logto keyword tells Snort to log all packets that triggerthis rule to a special output log

file.
session The session keyword is built to extract user data from TCP Sessions.
resp The resp keyword is used attempt to close sessions when an alert is triggered.
react This keyword implements an ability for users to react to traffic that matches a Snort rule by

closing connection and sending a notice.
tag The tag keyword allow rules to log more than just the single packet that triggered the rule.
activates This keyword allows the rule writer to specify a rule to add when a specific network event

occurs.
activated by This keyword allows the rule writer to dynamically enable a rule when a specific activate

rule is triggered.
count This keyword must be used in combination with theactivated by keyword. It allows the

rule writer to specify how many packets to leave the rule enabled for after it is activated.

3.8 Event Thresholding

Event thresholding can be used to reduce the number of loggedalerts for noisy rules. This can be tuned to significantly
reduce false alarms, and it can also be used to write a newer breed of rules. Thresholding commands limit the number
of times a particular event is logged during a specified time interval.

There are 3 types of thresholding:

• limit

Alerts on the 1stm events during the time interval, then ignores events for therest of the time interval.

• threshold

Alerts everym times we see this event during the time interval.

• both

Alerts once per time interval after seeingm occurrences of the event, then ignores any additional events during
the time interval.

Thresholding commands can be included as part of a rule, or you can use standalone threshold commands that refer-
ence the generator and SID they are applied to. There is no functional difference between adding a threshold to a rule,
or using a separate threshold command applied to the same rule. There is a logical difference. Some rules may only
make sense with a threshold. These should incorporate the threshold command into the rule. For instance, a rule for

139

detecting a too many login password attempts may require more than 5 attempts. This can be done using the ‘limit’
type of threshold command. It makes sense that the thresholdfeature is an integral part of this rule.

In order for rule thresholds to apply properly, these rules must contain a SID.

Only one threshold may be applied to any given generator and SID pair. If more than one threshold is applied to a
generator and SID pair, Snort will terminate with an error while reading the configuration information.

3.8.1 Standalone Options

This format supports 6 threshold options as described in Table 3.12—all are required.

Table 3.12: Standalone Options

Option Arguments
gen id <generator ID>
sig id <Snort signature ID>
type limit , threshold , or both
track by src or by dst
count <number of events>
seconds <time period over which count is accrued>

3.8.2 Standalone Format

threshold gen_id <gen-id>, sig_id <sig-id>, \
type <limit|threshold|both>, \
track <by_src|by_dst>, count <s>, seconds <m>

3.8.3 Rule Keyword Format

This format supports 4 threshold options as described in Table 3.13—all are required.

Table 3.13: Rule Keyword Options

Option Arguments

type limit , threshold , or both
track by src or by dst
count <number of events>
seconds <time period over which count is accrued>

3.8.4 Rule Keyword Format

threshold: type <limit|threshold|both>, track <by_src|b y_dst>, \
count <n>, seconds <m>;

For either standalone or rule format, all tracking is by src or by dst ip, ports or anything else are not tracked.

Thresholding can also be used globally, this allows you to specify a threshold for every rule. Standard thresholding
tests are applied first to an event, if they do not block a rule from being logged, and then the global thresholding test is
applied—thresholds in a rule will override a global threshold. Global thresholds do not override what’s in a signature
or a more specific stand-alone threshold.

140

The global threshold options are the same as the standard threshold options with the exception of the ‘sig id ’ field.
Thesig id field must be set to 0 to indicate that this threshold command applies to allsig id values with the specified
gen id . To apply the same threshold to allgen id ’s at the same time, and with just one command specify a value of
gen id=0 .

The format for global threshold commands is as such:

threshold gen_id <gen-id>, sig_id 0, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event from<gen-id>.

or

threshold gen_id 0 , sig_id 0, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event from every gen-id.

3.8.5 Examples

Standalone Thresholds

Limit logging to 1 event per 60 seconds:

threshold gen_id 1, sig_id 1851, \
type limit, track by_src, \
count 1, seconds 60

Limit logging to every 3rd event:

threshold gen_id 1, sig_id 1852, \
type threshold, track by_src, \
count 3, seconds 60

Limit logging to just 1 event per 60 seconds, but only if we exceed 30 events in 60 seconds:

threshold gen_id 1, sig_id 1853, \
type both, track by_src, \
count 30, seconds 60

Rule Thresholds

This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type li mit, track \
by_src, count 1 , seconds 60 ; sid:1000852; rev:1;)

141

This rule logs every 10th event on this SID during a 60 second interval. So if less than 10 events occur in 60 seconds,
nothing gets logged. Once an event is logged, a new time period starts for type=threshold.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type th reshold, \
track by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

This rule logs at most one event every 60 seconds if at least 10events on this SID are fired.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type bo th , track \
by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

Global Thresholds

Limit to logging 1 event per 60 seconds per IP triggering eachrule (rule genid is 1):

threshold gen_id 1, sig_id 0, type limit, track by_src, coun t 1, seconds 60

Limit to logging 1 event per 60 seconds per IP, triggering each rule for each event generator:

threshold gen_id 0, sig_id 0, type limit, track by_src, coun t 1, seconds 60

Events in Snort are generated in the usual way, thresholdingis handled as part of the output system. Read gen-msg.map
for details on gen ids.

Users can also configure a memcap for threshold with a “config:” option:

config threshold: memcap <bytes>

142

3.9 Event Suppression

Event suppression stops specified events from firing withoutremoving the rule from the rule base. Suppression uses
a CIDR block notation to select specific networks and users for suppression. Suppression tests are performed prior to
either standard or global thresholding tests.

Suppression commands are standalone commands that reference generators, SIDs, and IP addresses via a CIDR block.
This allows a rule to be completely suppressed, or suppressed when the causative traffic is going to or coming from a
specific IP or group of IP addresses.

You may apply multiple suppression commands to a SID. You mayalso combine one threshold command and several
suppression commands to the same SID.

3.9.1 Format

The suppress command supports either 2 or 4 options, as described in Table 3.14.

Table 3.14: Suppression Options

Option Argument Required?

gen id <generator id> required
sig id <Snort signature id> required
track by src or by dst optional, requires ip
ip ip[/mask] optional, requires track

suppress gen_id <gen-id>, sig_id <sig-id>, \
track <by_src|by_dst>, ip <ip|mask-bits>

3.9.2 Examples

Suppress this event completely:

suppress gen_id 1, sig_id 1852:

Suppress this event from this IP:

suppress gen_id 1, sig_id 1852, track by_src, ip 10.1.1.54

Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.0/2 4

143

3.10 Snort Multi-Event Logging (Event Queue)

Snort supports logging multiple events per packet/stream that are prioritized with different insertion methods, suchas
max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:

config event_queue: [max_queue [size]] [log [size]] [orde r_events [TYPE]]

3.10.1 Event Queue Configuration Options

There are three configuration options to the configuration parameter ’eventqueue’.

1. max queue

This determines the maximum size of the event queue. For example, if the event queue has a max size of 8, only
8 events will be stored for a single packet or stream.

The default value is 8.

2. log

This determines the number of events to log for a given packetor stream. You can’t log more than the maxevent
number that was specified.

The default value is 3.

3. order events

This argument determines the way that the incoming events are ordered. We currently have two different meth-
ods:

• priority - The highest priority (1 being the highest) events are ordered first.

• content length - Rules are ordered before decode or preprocessor alerts, and rules that have a longer
content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rule types such as pass, alert, log, etc.

The default value is contentlength.

3.10.2 Event Queue Configuration Examples

The default configuration:

config event_queue: max_queue 8 log 3 order_events content _length

Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events conten t_length

Use the default event queue values, but change event order:

config event_queue: order_events priority

Use the default event queue values but change the number of logged events:

config event_queue: log 2

144

3.11 Writing Good Rules

There are some general concepts to keep in mind when developing Snort rules to maximize efficiency and speed.

3.11.1 Content Matching

The 2.0 detection engine changes the way Snort works slightly by having the first phase be a setwise pattern match.
The longer a content option is, the moreexactthe match. Rules withoutcontent(or uricontent) slow the entire system
down.

While some detection options, such aspcreandbyte test, perform detection in the payload section of the packet, they
do not use the setwise pattern matching engine. If at all possible, try and have at least onecontentoption if at all
possible.

3.11.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, instead ofa specific exploit.

For example, look for a the vulnerable command with an argument that is too large, instead of shellcode that binds a
shell.

By writing rules for the vulnerability, the rule is less vulnerable to evasion when an attacker changes the exploit
slightly.

3.11.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper case letters. FTP is a good example. In FTP, to send the
username, the client sends:

user username_here

A simple rule to look for FTP root login attempts could be:

alert tcp any any -> any any 21 (content:"user root";)

While it mayseemtrivial to write a rule that looks for the username root, a good rule will handle all of the odd things
that the protocol might handle when accepting the user command.

For example, each of the following are accepted by most FTP servers:

user root
user root
user root
user root
user<tab>root

To handle all of the cases that the FTP server might handle, the rule needs more smarts than a simple string match.

A good rule that looks for root login on ftp would be:

alert tcp any any -> any 21 (flow:to_server,established; co ntent:"root";
pcre:"/user\s+root/i";)

There are a few important things to note in this rule:

145

• The rule has aflowoption, verifying this is traffic going to the server on an enstablished session.

• The rule has acontentoption, looking forroot, which is the longest, most unique string in the attack. Thisoption
is added to allow Snort’s setwise pattern match detection engine to give Snort a boost in speed.

• The rule has apcreoption, looking for user, followed at least one space character (which includes tab), followed
by root, ignoring case.

3.11.4 Optimizing Rules

The content matching portion of the detection engine has recursion to handle a few evasion cases. Rules that are not
properly written can cause Snort to waste time duplicating checks.

The way the recursion works now is if a pattern matches, and ifany of the detection options after that pattern fail, then
look for the pattern again after where it was found the previous time. Repeat until the pattern is not found again or the
opt functions all succeed.

On first read, that may not sound like a smart idea, but it is needed. For example, take the following rule:

alert ip any any -> any any (content:"a"; content:"b"; withi n:1;)

This rule would look for “a”, immediately followed by “b”. Without recursion, the payload “aab” would fail, even
though it is obvious that the payload “aab” has “a” immediately followed by “b”, because the first ”a” is not immedi-
ately followed by “b”.

While recursion is important for detection, the recursion implementation is not very smart.

For example, the following rule options are not optimized:

content:"|13|"; dsize:1;

By looking at this rule snippit, it is obvious the rule looks for a packet with a single byte of 0x13. However, because
of recursion, a packet with 1024 bytes of 0x13 could cause 1023 too many pattern match attempts and 1023 too many
dsize checks. Why? The content 0x13 would be found in the firstbyte, then the dsize option would fail, and because
of recursion, the content 0x13 would be found again startingafter where the previous 0x13 was found, once it is found,
then check the dsize again, repeating until 0x13 is not foundin the payload again.

Reordering the rule options so that discrete checks (such asdsize) are moved to the begining of the rule speed up
Snort.

The optimized rule snipping would be:

dsize:1; content:"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as the dsize check is the first option checked and dsize is a
discrete check without recursion.

The following rule options are discrete and should generally be placed at the begining of any rule:

• dsize

• flags

• flow

• fragbits

• icmp id

• icmp seq

• icode

146

• id

• ipopts

• ip proto

• itype

• seq

• session

• tos

• ttl

• ack

• window

• resp

• sameip

3.11.5 Testing Numerical Values

The rule optionsbyte testandbyte jumpwere written to support writing rules for protocols that have length encoded
data. RPC was the protocol that spawned the requirement for these two rule options, as RPC uses simple length based
encoding for passing data.

In order to understandwhybyte test and bytejump are useful, let’s go through an exploit attempt againstthe sadmind
service.

This is the payload of the exploit:

89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88
00 00 00 0a 00 00 00 01 00 00 00 01 00 00 00 20
40 28 3a 10 00 00 00 0a 4d 45 54 41 53 50 4c 4f @(:.....metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 40 28 3a 14 00 07 45 df@(:...e.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 04
7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 04
7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 11
00 00 00 1e 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f;metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00system..
00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f/../../../
2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 1e ../bin/sh.......
<snip>

Let’s break this up, describe each of the fields, and figure outhow to write a rule to catch this exploit.

There are a few things to note with RPC:

• Numbers are written as uint32s, taking four bytes. The number 26 would show up as 0x0000001a.

147

• Strings are written as a uint32 specifying the length of the string, the string, and then null bytes to pad the length
of the string to end on a 4 byte boundary. The string “bob” would show up as 0x00000003626f6200.

89 09 9c e2 - the request id, a random uint32, unique to each req uest
00 00 00 00 - rpc type (call = 0, response = 1)
00 00 00 02 - rpc version (2)
00 01 87 88 - rpc program (0x00018788 = 100232 = sadmind)
00 00 00 0a - rpc program version (0x0000000a = 10)
00 00 00 01 - rpc procedure (0x00000001 = 1)
00 00 00 01 - credential flavor (1 = auth_unix)
00 00 00 20 - length of auth_unix data (0x20 = 32

the next 32 bytes are the auth_unix data
40 28 3a 10 - unix timestamp (0x40283a10 = 1076378128 = feb 10 0 1:55:28 2004 gmt)
00 00 00 0a - length of the client machine name (0x0a = 10)
4d 45 54 41 53 50 4c 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)
00 00 00 00 - gid of requesting user (0)
00 00 00 00 - extra group ids (0)

00 00 00 00 - verifier flavor (0 = auth_null, aka none)
00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed to procedure 1 of sadmind.

However, we know the vulnerability is that sadmind trusts the uid coming from the client. sadmind runs any request
where the client’s uid is 0 as root. As such, we have decoded enough of the request to write our rule.

First, we need to make sure that our packet is an RPC call.

content:"|00 00 00 00|"; offset:4; depth:4;

Then, we need to make sure that our packet is a call to sadmind.

content:"|00 01 87 88|"; offset:12; depth:4;

Then, we need to make sure that our packet is a call to the procedure 1, the vulnerable procedure.

content:"|00 00 00 01|"; offset:16; depth:4;

Then, we need to make sure that our packet has authunix credentials.

content:"|00 00 00 01|"; offset:20; depth:4;

We don’t care about the hostname, but we want to skip over it and check a number value after the hostname. This is
where bytetest is useful. Starting at the length of the hostname, the data we have is:

00 00 00 0a 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump that many bytes forward, making sure to account for the
padding that RPC requires on strings. If we do that, we are nowat:

148

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

which happens to be the exact location of the uid, the value wewant to check.

In english, we want to read 4 bytes, 36 bytes from the beginning of the packet, and turn those 4 bytes into an integer
and jump that many bytes forward, aligning on the 4 byte boundary. To do that in a Snort rule, we use:

byte_jump:4,36,align;

then we want to look for the uid of 0.

content:"|00 00 00 00|"; within:4;

Now that we have all the detection capabilities for our rule,let’s put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01|"; offset:16; depth:4;
content:"|00 00 00 01|"; offset:20; depth:4;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

The 3rd and fourth string match are right next to each other, so we should combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a buffer overflow when reading the client’s hostname, instead of reading the
length of the hostname and jumping that many bytes forward, we would check the length of the hostname to make
sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into the packet, turn it into a number, and then make sure it is not
too large (let’s say bigger than 200 bytes). In Snort, we do:

byte_test:4,>,200,36;

Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_test:4,>,200,36;

149

Chapter 4

Making Snort Faster

4.1 MMAPed pcap

On Linux, a modified version of libpcap is available that implements a shared memory ring buffer. Phil Woods
(cpw@lanl.gov) is the current maintainer of the libpcap implementation of the shared memory ring buffer. The shared
memory ring buffer libpcap can be downloaded from his website athttp://public.lanl.gov/cpw/ .

Instead of the normal mechanism of copying the packets from kernel memory into userland memory, by using a shared
memory ring buffer, libpcap is able to queue packets into a shared buffer that Snort is able to read directly. This change
speeds up Snort by limiting the number of times the packet is copied before Snort gets to perform its detection upon
it.

Once Snort linked against the shared memory libpcap, enabling the ring buffer is done via setting the enviornment
variablePCAPFRAMES. PCAPFRAMESis the size of the ring buffer. According to Phil, the maximumsize is
32768, as this appears to be the maximum number of iovecs the kernel can handle. By usingPCAPFRAMES=max,
libpcap will automatically use the most frames possible. OnEthernet, this ends up being 1530 bytes per frame, for a
total of around 52 Mbytes of memory for the ring buffer alone.

150

http://public.lanl.gov/cpw/

Chapter 5

Dynamic Modules

Preprocessors, detection capabilities, and rules can now be developed as dynamically loadable module to snort. When
enabled via the–enable-dynamicpluginconfigure option, the dynamic API presents a means for loading dynamic
libraries and allowing the module to utilize certain functions within the main snort code.

The remainder of this chapter will highlight the data structures and API functions used in developing preprocessors,
detection engines, and rules as a dynamic plugin to snort.

5.1 Data Structures

A number of data structures are central to the API. The definition of each is defined in the following sections.

5.1.1 DynamicPluginMeta

TheDynamicPluginMetastructure defines the type of dynamic module (preprocessor,rules, or detection engine), the
version information, and path to the shared library. A shared library can implement all three types, but typically is
limited to a single functionality such as a preprocessor. Itis defined insf dynamic meta.h as:

#define TYPE_ENGINE 0x01
#define TYPE_DETECTION 0x02
#define TYPE_PREPROCESSOR 0x04

typedef struct _DynamicPluginMeta
{

int type;
int major;
int minor;
int build;
char uniqueName[MAX_NAME_LEN];
char *libraryPath;

} DynamicPluginMeta;

5.1.2 DynamicPreprocessorData

TheDynamicPreprocessorDatastructure defines the interface the preprocessor uses to interact with snort itself. This
inclues functions to register the preprocessor’s configuration parsing, restart, exit, and processing functions. It includes
function to log messages, errors, fatal errors, and debugging info. It also includes information for setting alerts,
handling Inline drops, access to the StreamAPI, and it provides access to the normalized http and alternate data

151

buffers. This data structure should be initialized when thepreprocessor shared library is loaded. It is defined in
sf dynamic preprocessor.h as:

typedef struct _DynamicPreprocessorData
{

int version;
char *altBuffer;
unsigned int altBufferLen;
UriInfo *uriBuffers[MAX_URIINFOS];
LogMsgFunc logMsg;
LogMsgFunc errMsg;
LogMsgFunc fatalMsg;
DebugMsgFunc debugMsg;

PreprocRegisterFunc registerPreproc;
AddPreprocFunc addPreproc;
AddPreprocRestart addPreprocRestart;
AddPreprocExit addPreprocExit;
AddPreprocConfCheck addPreprocConfCheck;
RegisterPreprocRuleOpt preprocOptRegister;
AddPreprocProfileFunc addPreprocProfileFunc;
ProfilingFunc profilingPreprocsFunc;
void *totalPerfStats;

AlertQueueAdd alertAdd;
ThresholdCheckFunc thresholdCheck;

InlineFunc inlineMode;
InlineDropFunc inlineDrop;

DetectFunc detect;
DisableDetectFunc disableDetect;
DisableDetectFunc disableAllDetect;

SetPreprocBitFunc setPreprocBit;

StreamAPI *streamAPI;
SearchAPI *searchAPI;

char **config_file;
int *config_line;
printfappendfunc printfappend;
TokenSplitFunc tokenSplit;
TokenFreeFunc tokenFree;

GetRuleInfoByNameFunc getRuleInfoByName;
GetRuleInfoByIdFunc getRuleInfoById;

} DynamicPreprocessorData;

5.1.3 DynamicEngineData

The DynamicEngineDatastructure defines the interface a detection engine uses to interact with snort itself. This
includes functions for logging messages, errors, fatal errors, and debugging info as well as a means to register and
check flowbits. It also includes a location to store rule-stubs for dynamic rules that are loaded, and it provides access
to the normalized http and alternate data buffers. It is defined insf dynamic engine.h as:

152

typedef struct _DynamicEngineData
{

int version;
char *altBuffer;
UriInfo *uriBuffers[MAX_URIINFOS];
RegisterRule ruleRegister;
RegisterBit flowbitRegister;
CheckFlowbit flowbitCheck;
DetectAsn1 asn1Detect;
LogMsg logMsg;
LogMsg errMsg;
LogMsg fatalMsg;
char *dataDumpDirectory;

GetPreprocRuleOptFuncs getPreprocOptFuncs;
} DynamicEngineData;

5.1.4 SFSnortPacket

TheSFSnortPacketstructure mirrors the snort Packet structure and provides access to all of the data contained in a
given packet.

It and the data structures it incorporates are defined insf snort packet.h as follows. Additional data structures may
be defined to reference other protocol fields.

#define IP_RESBIT 0x8000
#define IP_DONTFRAG 0x4000
#define IP_MOREFRAGS 0x2000

typedef struct _IPV4Header
{

u_int8_t version_headerlength;
u_int8_t type_service;
u_int16_t data_length;
u_int16_t identifier;
u_int16_t offset;
u_int8_t time_to_live;
u_int8_t proto;
u_int16_t checksum;
struct in_addr source;
struct in_addr destination;

} IPV4Header;

#define MAX_IP_OPTIONS 40
/* ip option codes */
#define IPOPTION_EOL 0x00
#define IPOPTION_NOP 0x01
#define IPOPTION_RR 0x07
#define IPOPTION_RTRALT 0x94
#define IPOPTION_TS 0x44
#define IPOPTION_SECURITY 0x82
#define IPOPTION_LSRR 0x83
#define IPOPTION_LSRR_E 0x84
#define IPOPTION_SATID 0x88
#define IPOPTION_SSRR 0x89

typedef struct _IPOptions

153

{
u_int8_t option_code;
u_int8_t length;
u_int8_t *option_data;

} IPOptions;

typedef struct _TCPHeader
{

u_int16_t source_port;
u_int16_t destination_port;
u_int32_t sequence;
u_int32_t acknowledgement;
u_int8_t offset_reserved;
u_int8_t flags;
u_int16_t window;
u_int16_t checksum;
u_int16_t urgent_pointer;

} TCPHeader;

#define TCPHEADER_FIN 0x01
#define TCPHEADER_SYN 0x02
#define TCPHEADER_RST 0x04
#define TCPHEADER_PUSH 0x08
#define TCPHEADER_ACK 0x10
#define TCPHEADER_URG 0x20
#define TCPHEADER_RES2 0x40
#define TCPHEADER_RES1 0x80
#define TCPHEADER_NORESERVED (TCPHEADER_FIN|TCPHEADER_SYN|TCPHEADER_RST \

|TCPHEADER_PUSH|TCPHEADER_ACK|TCPHEADER_URG)
#define MAX_TCP_OPTIONS 40
/* tcp option codes */
#define TCPOPT_EOL 0x00
#define TCPOPT_NOP 0x01
#define TCPOPT_MSS 0x02
#define TCPOPT_WSCALE 0x03 /* window scale factor (rfc1072) */
#define TCPOPT_SACKOK 0x04 /* selective ack ok (rfc1072) */
#define TCPOPT_SACK 0x05 /* selective ack (rfc1072) */
#define TCPOPT_ECHO 0x06 /* echo (rfc1072) */
#define TCPOPT_ECHOREPLY 0x07 /* echo (rfc1072) */
#define TCPOPT_TIMESTAMP 0x08 /* timestamps (rfc1323) */
#define TCPOPT_CC 0x11 /* T/TCP CC options (rfc1644) */
#define TCPOPT_CCNEW 0x12 /* T/TCP CC options (rfc1644) */
#define TCPOPT_CCECHO 0x13 /* T/TCP CC options (rfc1644) */

typedef IPOptions TCPOptions;

typedef struct _UDPHeader
{

u_int16_t source_port;
u_int16_t destination_port;
u_int16_t data_length;
u_int16_t checksum;

} UDPHeader;

typedef struct _ICMPSequenceID
{

u_int16_t id;

154

u_int16_t seq;
} ICMPSequenceID;

typedef struct _ICMPHeader
{

u_int8_t type;
u_int8_t code;
u_int16_t checksum;

union
{

/* type 12 */
u_int8_t parameter_problem_ptr;

/* type 5 */
struct in_addr gateway_addr;

/* type 8, 0 */
ICMPSequenceID echo;

/* type 13, 14 */
ICMPSequenceID timestamp;

/* type 15, 16 */
ICMPSequenceID info;

int voidInfo;

/* type 3/code=4 (Path MTU, RFC 1191) */
struct path_mtu
{

u_int16_t voidInfo;
u_int16_t next_mtu;

} path_mtu;

/* type 9 */
struct router_advertisement
{

u_int8_t number_addrs;
u_int8_t entry_size;
u_int16_t lifetime;

} router_advertisement;
} icmp_header_union;

#define icmp_parameter_ptr icmp_header_union.paramete r_problem_ptr
#define icmp_gateway_addr icmp_header_union.gateway_w addr
#define icmp_echo_id icmp_header_union.echo.id
#define icmp_echo_seq icmp_header_union.echo.seq
#define icmp_timestamp_id icmp_header_union.timestamp .id
#define icmp_timestamp_seq icmp_header_union.timestam p.seq
#define icmp_info_id icmp_header_union.info.id
#define icmp_info_seq icmp_header_union.info.seq
#define icmp_void icmp_header_union.void
#define icmp_nextmtu icmp_header_union.path_mtu.nextm tu
#define icmp_ra_num_addrs icmp_header_union.router_ad vertisement.number_addrs
#define icmp_ra_entry_size icmp_header_union.router_a dvertisement.entry_size
#define icmp_ra_lifetime icmp_header_union.router_adv ertisement.lifetime

155

union
{

/* timestamp */
struct timestamp
{

u_int32_t orig;
u_int32_t receive;
u_int32_t transmit;

} timestamp;

/* IP header for unreach */
struct ipv4_header
{

IPV4Header *ip;
/* options and then 64 bits of data */

} ipv4_header;

/* Router Advertisement */
struct router_address
{

u_int32_t addr;
u_int32_t preference;

} router_address;

/* type 17, 18 */
u_int32_t mask;

char data[1];
} icmp_data_union;

#define icmp_orig_timestamp icmp_data_union.timestamp .orig
#define icmp_recv_timestamp icmp_data_union.timestamp .receive
#define icmp_xmit_timestamp icmp_data_union.timestamp .transmit
#define icmp_ipheader icmp_data_union.ip_header
#define icmp_ra_addr0 icmp_data_union.router_address
#define icmp_mask icmp_data_union.mask
#define icmp_data icmp_data_union.data
} ICMPHeader;

#define ICMP_ECHO_REPLY 0 /* Echo Reply */
#define ICMP_DEST_UNREACHABLE 3 /* Destination Unreachab le */
#define ICMP_SOURCE_QUENCH 4 /* Source Quench */
#define ICMP_REDIRECT 5 /* Redirect (change route) */
#define ICMP_ECHO_REQUEST 8 /* Echo Request */
#define ICMP_ROUTER_ADVERTISEMENT 9 /* Router Advertisem ent */
#define ICMP_ROUTER_SOLICITATION 10 /* Router Solicitati on */
#define ICMP_TIME_EXCEEDED 11 /* Time Exceeded */
#define ICMP_PARAMETER_PROBLEM 12 /* Parameter Problem */
#define ICMP_TIMESTAMP_REQUEST 13 /* Timestamp Request */
#define ICMP_TIMESTAMP_REPLY 14 /* Timestamp Reply */
#define ICMP_INFO_REQUEST 15 /* Information Request */
#define ICMP_INFO_REPLY 16 /* Information Reply */
#define ICMP_ADDRESS_REQUEST 17 /* Address Mask Request */
#define ICMP_ADDRESS_REPLY 18 /* Address Mask Reply */

#define CHECKSUM_INVALID_IP 0x01
#define CHECKSUM_INVALID_TCP 0x02
#define CHECKSUM_INVALID_UDP 0x04

156

#define CHECKSUM_INVALID_ICMP 0x08
#define CHECKSUM_INVALID_IGMP 0x10

typedef struct _SFSnortPacket
{

struct pcap_pkthdr *pcap_header;
u_int8_t *pkt_data;

void *fddi_header;
void *fddi_saps;
void *fddi_sna;
void *fddi_iparp;
void *fddi_other;

void *tokenring_header;
void *tokenring_header_llc;
void *tokenring_header_mr;

void *sll_header;

void *pflog_header;
void *old_pflog_header;

void *ether_header;
void *vlan_tag_header;

void *ether_header_llc;
void *ether_header_other;

void *wifi_header;

void *ether_arp_header;

void *ether_eapol_header; /* 802.1x */
void *eapol_headear;
u_int8_t *eapol_type;
void *eapol_key;

void *ppp_over_ether_header;

IPV4Header *ip4_header, *orig_ip4_header;
u_int32_t ip4_options_length;
void *ip4_options_data;

TCPHeader *tcp_header, *orig_tcp_header;
u_int32_t tcp_options_length;
void *tcp_options_data;

UDPHeader *udp_header, *orig_udp_header;
ICMPHeader *icmp_header, *orig_icmp_header;

u_int8_t *payload;
u_int16_t payload_size;
u_int16_t normalized_payload_size;

u_int16_t actual_ip_length;

157

u_int8_t ip_fragmented;
u_int16_t ip_fragment_offset;
u_int8_t ip_more_fragments;
u_int8_t ip_dont_fragment;
u_int8_t ip_reserved;

u_int16_t src_port;
u_int16_t dst_port;
u_int16_t orig_src_port;
u_int16_t orig_dst_port;
u_int32_t pcap_cap_len;

u_int8_t num_uris;

void *stream_session_ptr;
void *fragmentation_tracking_ptr;
void *flow_ptr;
void *stream_ptr;

IPOptions ip_options[MAX_IP_OPTIONS];
u_int32_t num_ip_options;
u_int8_t ip_last_option_invalid_flag;

TCPOptions tcp_options[MAX_TCP_OPTIONS];
u_int32_t num_tcp_options;
u_int8_t tcp_last_option_invalid_flag;

u_int8_t checksums_invalid;
u_int32_t flags;

#define FLAG_REBUILT_FRAG 0x00000001
#define FLAG_REBUILT_STREAM 0x00000002
#define FLAG_STREAM_UNEST_UNI 0x00000004
#define FLAG_STREAM_UNEST_BI 0x00000008
#define FLAG_STREAM_EST 0x00000010
#define FLAG_FROM_SERVER 0x00000040
#define FLAG_FROM_CLIENT 0x00000080
#define FLAG_HTTP_DECODE 0x00000100
#define FLAG_STREAM_INSERT 0x00000400
#define FLAG_ALT_DECODE 0x00000800

u_int32_t number_bytes_to_check;

void *preprocessor_bit_mask;
} SFSnortPacket;

5.1.5 Dynamic Rules

A dynamic rule should use any of the following data structures. The following structures are defined insf snort plugin api.h .

Rule

The Rulestructure defines the basic outline of a rule and contains thesame set of information that is seen in a text
rule. That includes protocol, address and port informationand rule information (classification, generator and signature
IDs, revision, priority, classification, and a list of references). It also includes a list of rule options and an optional
evaluation function.

158

#define RULE_MATCH 1
#define RULE_NOMATCH 0

typedef struct _Rule
{

IPInfo ip;
RuleInformation info;

RuleOption **options; /* NULL terminated array of RuleOpti on union */

ruleEvalFunc evalFunc;

char initialized; /* Rule Initialized, used internally */
u_int32_t numOptions; /* Rule option count, used internall y */
char noAlert; /* Flag with no alert, used internally */
void *ruleData; /* Hash table for dynamic data pointers */

} Rule;

The rule evaluation function is defined as

int (*ruleEvalFunc)(void *);

where the parameter is a pointer to the SFSnortPacket structure.

RuleInformation

The RuleInformationstructure defines the meta data for a rule and includes generator ID, signature ID, revision,
classification, priority, message text, and a list of references.

int (*ruleEvalFunc)(void *);
truct _RuleInformation
{

u_int32_t genID;
u_int32_t sigID;
u_int32_t revision;
char *classification; /* String format of classification n ame */
u_int32_t priority;
char *message;
RuleReference **references; /* NULL terminated array of re ferences */

} RuleInformation;

RuleReference

TheRuleReferencestructure defines a single rule reference, including the system name and rereference identifier.

typedef struct _RuleReference
{

char *systemName;
char *refIdentifier;

} RuleReference;

159

IPInfo

TheIPInfo structure defines the initial matching criteria for a rule and includes the protocol, src address and port, des-
tination address and port, and direction. Some of the standard strings and variables are predefined - any, HOMENET,
HTTP SERVERS, HTTPPORTS, etc.

typedef struct _IPInfo
{

u_int8_t protocol;
char * src_addr;
char * src_port; /* 0 for non TCP/UDP */
char direction; /* non-zero is bi-directional */
char * dst_addr;
char * dst_port; /* 0 for non TCP/UDP */

} IPInfo;

#define ANY_NET "any"
#define HOME_NET "$HOME_NET"
#define EXTERNAL_NET "$EXTERNAL_NET"
#define ANY_PORT "any"
#define HTTP_SERVERS "$HTTP_SERVERS"
#define HTTP_PORTS "$HTTP_PORTS"
#define SMTP_SERVERS "$SMTP_SERVERS"

RuleOption

The RuleOptionstructure defines a single rule option as an option type and a reference to the data specific to that
option. Each option has a flags field that contains specific flags for that option as well as a ”Not” flag. The ”Not” flag
is used to negate the results of evaluating that option.

#define OPTION_TYPE_CONTENT 0x01
#define OPTION_TYPE_PCRE 0x02
#define OPTION_TYPE_FLOWBIT 0x03
#define OPTION_TYPE_FLOWFLAGS 0x04
#define OPTION_TYPE_ASN1 0x05
#define OPTION_TYPE_CURSOR 0x06
#define OPTION_TYPE_HDR_CHECK 0x07
#define OPTION_TYPE_BYTE_TEST 0x08
#define OPTION_TYPE_BYTE_JUMP 0x09
#define OPTION_TYPE_BYTE_EXTRACT 0x10
#define OPTION_TYPE_SET_CURSOR 0x11
#define OPTION_TYPE_LOOP 0x12

typedef struct _RuleOption
{

int optionType;
union
{

void *ptr;
ContentInfo *content;
CursorInfo *cursor;
PCREInfo *pcre;
FlowBitsInfo *flowBit;
ByteData *byte;
ByteExtract *byteExtract;
FlowFlags *flowFlags;

160

Asn1Context *asn1;
HdrOptCheck *hdrData;
LoopInfo *loop;

} option_u;
} RuleOption;

#define NOT_FLAG 0x10000000

Some options also contain information that is initialized at run time, such as the compiled PCRE information, Boyer-
Moore content information, the integer ID for a flowbit, etc.

The option types and related structures are listed below.

• OptionType: Content & Structure:ContentInfo

TheContentInfostructure defines an option for a content search. It includesthe pattern, depth and offset, and
flags (one of which must specify the buffer – raw, URI or normalized – to search). Additional flags include
nocase, relative, unicode, and a designation that this content is to be used for snorts fast pattern evaluation. The
most unique content, that which distinguishes this rule as apossible match to a packet, should be marked for
fast pattern evaluation. In the dynamic detection engine provided with Snort, if noContentInfostructure in a
given rules uses that flag, the one with the longest content length will be used.

typedef struct _ContentInfo
{

u_int8_t *pattern;
u_int32_t depth;
int32_t offset;
u_int32_t flags; /* must include a CONTENT_BUF_X */
void *boyer_ptr;
u_int8_t *patternByteForm;
u_int32_t patternByteFormLength;
u_int32_t incrementLength;

} ContentInfo;

#define CONTENT_NOCASE 0x01
#define CONTENT_RELATIVE 0x02
#define CONTENT_UNICODE2BYTE 0x04
#define CONTENT_UNICODE4BYTE 0x08
#define CONTENT_FAST_PATTERN 0x10
#define CONTENT_END_BUFFER 0x20

#define CONTENT_BUF_NORMALIZED 0x100
#define CONTENT_BUF_RAW 0x200
#define CONTENT_BUF_URI 0x400

• OptionType: PCRE & Structure:PCREInfo

ThePCREInfostructure defines an option for a PCRE search. It includes thePCRE expression, pcreflags such
as caseless, as defined in PCRE.h, and flags to specify the buffer.

/*
pcre.h provides flags:

PCRE_CASELESS
PCRE_MULTILINE
PCRE_DOTALL
PCRE_EXTENDED
PCRE_ANCHORED

161

PCRE_DOLLAR_ENDONLY
PCRE_UNGREEDY
*/

typedef struct _PCREInfo
{

char *expr;
void *compiled_expr;
void *compiled_extra;
u_int32_t compile_flags;
u_int32_t flags; /* must include a CONTENT_BUF_X */

} PCREInfo;

• OptionType: Flowbit & Structure:FlowBitsInfo

TheFlowBitsInfostructure defines a flowbits option. It includes the name of the flowbit and the operation (set,
unset, toggle, isset, isnotset).

#define FLOWBIT_SET 0x01
#define FLOWBIT_UNSET 0x02
#define FLOWBIT_TOGGLE 0x04
#define FLOWBIT_ISSET 0x08
#define FLOWBIT_ISNOTSET 0x10
#define FLOWBIT_RESET 0x20
#define FLOWBIT_NOALERT 0x40

typedef struct _FlowBitsInfo
{

char *flowBitsName;
u_int8_t operation;
u_int32_t id;
u_int32_t flags;

} FlowBitsInfo;

• OptionType: Flow Flags & Structure:FlowFlags

TheFlowFlagsstructure defines a flow option. It includes the flags, which specify the direction (fromserver,
to server), established session, etc.

#define FLOW_ESTABLISHED 0x10
#define FLOW_IGNORE_REASSEMBLED 0x1000
#define FLOW_ONLY_REASSMBLED 0x2000
#define FLOW_FR_SERVER 0x40
#define FLOW_TO_CLIENT 0x40 /* Just for redundancy */
#define FLOW_TO_SERVER 0x80
#define FLOW_FR_CLIENT 0x80 /* Just for redundancy */

typedef struct _FlowFlags
{

u_int32_t flags;
} FlowFlags;

• OptionType: ASN.1 & Structure:Asn1Context

TheAsn1Contextstructure defines the information for an ASN1 option. It mirrors the ASN1 rule option and
also includes a flags field.

#define ASN1_ABS_OFFSET 1

162

#define ASN1_REL_OFFSET 2

typedef struct _Asn1Context
{

int bs_overflow;
int double_overflow;
int print;
int length;
unsigned int max_length;
int offset;
int offset_type;
u_int32_t flags;

} Asn1Context;

• OptionType: Cursor Check & Structure:CursorInfo

TheCursorInfostructure defines an option for a cursor evaluation. The cursor is the current position within the
evaluation buffer, as related to content and PCRE searches,as well as byte tests and byte jumps. It includes an
offset and flags that specify the buffer. This can be used to verify there is sufficient data to continue evaluation,
similar to the isdataat rule option.

typedef struct _CursorInfo
{

int32_t offset;
u_int32_t flags; /* specify one of CONTENT_BUF_X */

} CursorInfo;

• OptionType: Protocol Header & Structure:HdrOptCheck

The HdrOptCheckstructure defines an option to check a protocol header for a specific value. It incldues the
header field, the operation (¡,¿,=,etc), a value, a mask to ignore that part of the header field, and flags.

#define IP_HDR_ID 0x0001 /* IP Header ID */
#define IP_HDR_PROTO 0x0002 /* IP Protocol */
#define IP_HDR_FRAGBITS 0x0003 /* Frag Flags set in IP Heade r */
#define IP_HDR_FRAGOFFSET 0x0004 /* Frag Offset set in IP He ader */
#define IP_HDR_OPTIONS 0x0005 /* IP Options -- is option xx i ncluded */
#define IP_HDR_TTL 0x0006 /* IP Time to live */
#define IP_HDR_TOS 0x0007 /* IP Type of Service */
#define IP_HDR_OPTCHECK_MASK 0x000f

#define TCP_HDR_ACK 0x0010 /* TCP Ack Value */
#define TCP_HDR_SEQ 0x0020 /* TCP Seq Value */
#define TCP_HDR_FLAGS 0x0030 /* Flags set in TCP Header */
#define TCP_HDR_OPTIONS 0x0040 /* TCP Options -- is option x x included */
#define TCP_HDR_WIN 0x0050 /* TCP Window */
#define TCP_HDR_OPTCHECK_MASK 0x00f0

#define ICMP_HDR_CODE 0x1000 /* ICMP Header Code */
#define ICMP_HDR_TYPE 0x2000 /* ICMP Header Type */
#define ICMP_HDR_ID 0x3000 /* ICMP ID for ICMP_ECHO/ICMP_E CHO_REPLY */
#define ICMP_HDR_SEQ 0x4000 /* ICMP ID for ICMP_ECHO/ICMP_ ECHO_REPLY */
#define ICMP_HDR_OPTCHECK_MASK 0xf000

typedef struct _HdrOptCheck
{

u_int16_t hdrField; /* Field to check */
u_int32_t op; /* Type of comparison */

163

u_int32_t value; /* Value to compare value against */
u_int32_t mask_value; /* bits of value to ignore */
u_int32_t flags;

} HdrOptCheck;

• OptionType: Byte Test & Structure:ByteData

The ByteDatastructure defines the information for both ByteTest and ByteJump operations. It includes the
number of bytes, an operation (for ByteTest, ¡,¿,=,etc), a value, an offset, multiplier, and flags. The flags must
specify the buffer.

#define CHECK_EQ 0
#define CHECK_NEQ 1
#define CHECK_LT 2
#define CHECK_GT 3
#define CHECK_LTE 4
#define CHECK_GTE 5
#define CHECK_AND 6
#define CHECK_XOR 7
#define CHECK_ALL 8
#define CHECK_ATLEASTONE 9
#define CHECK_NONE 10

typedef struct _ByteData
{

u_int32_t bytes; /* Number of bytes to extract */
u_int32_t op; /* Type of byte comparison, for checkValue */
u_int32_t value; /* Value to compare value against, for chec kValue, or extracted value */
int32_t offset; /* Offset from cursor */
u_int32_t multiplier; /* Used for byte jump -- 32bits is MORE than enough */
u_int32_t flags; /* must include a CONTENT_BUF_X */

} ByteData;

• OptionType: Byte Jump & Structure:ByteData

SeeByte Testabove.

• OptionType: Set Cursor & Structure:CursorInfo

SeeCursor Checkabove.

• OptionType: Loop & Structures:LoopInfo,ByteExtract,DynamicElement

TheLoopInfostructure defines the information for a set of options that are to be evaluated repeatedly. The loop
option acts like a FOR loop and includes start, end, and increment values as well as the comparison operation for
termination. It includes a cursor adjust that happens through each iteration of the loop, a reference to a RuleInfo
structure that defines the RuleOptions are to be evaluated through each iteration. One of those options may be a
ByteExtract.

typedef struct _LoopInfo
{

DynamicElement *start; /* Starting value of FOR loop (i=sta rt) */
DynamicElement *end; /* Ending value of FOR loop (i OP end) */
DynamicElement *increment; /* Increment value of FOR loop (i+= increment) */
u_int32_t op; /* Type of comparison for loop termination */
CursorInfo *cursorAdjust; /* How to move cursor each iterat ion of loop */
struct _Rule *subRule; /* Pointer to SubRule & options to eva luate within

* the loop */
u_int8_t initialized; /* Loop initialized properly (safeg uard) */
u_int32_t flags; /* can be used to negate loop results, speci fies

} LoopInfo;

164

TheByteExtractstructure defines the information to use when extracting bytes for a DynamicElement used a in
Loop evaltion. It includes the number of bytes, an offset, multiplier, flags specifying the buffer, and a reference
to the DynamicElement.

typedef struct _ByteExtract
{

u_int32_t bytes; /* Number of bytes to extract */
int32_t offset; /* Offset from cursor */
u_int32_t multiplier; /* Multiply value by this (similar to byte jump) */
u_int32_t flags; /* must include a CONTENT_BUF_X */
char *refId; /* To match up with a DynamicElement refId */
void *memoryLocation; /* Location to store the data extract ed */

} ByteExtract;

The DynamicElementstructure is used to define the values for a looping evaluation. It includes whether the
element is static (an integer) or dynamic (extracted from a buffer in the packet) and the value. For a dynamic
element, the value is filled by a related ByteExtract option that is part of the loop.

#define DYNAMIC_TYPE_INT_STATIC 1
#define DYNAMIC_TYPE_INT_REF 2

typedef struct _DynamicElement
{

char dynamicType; /* type of this field - static or reference */
char *refId; /* reference ID (NULL if static) */
union
{

void *voidPtr; /* Holder */
int32_t staticInt; /* Value of static */
int32_t *dynamicInt; /* Pointer to value of dynamic */

} data;
} DynamicElement;

5.2 Required Functions

Each dynamic module must define a set of functions and data objects to work within this framework.

5.2.1 Preprocessors

Each dynamic preprocessor library must define the followingfunctions. These are defined in the filesf dynamic preproc lib.c .
The metadata and setup function for the preprocessor shouldbe definedsf preproc info.h .

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int InitializePreprocessor(DynamicPreprocessorData *)

This function initializes the data structure for use by the preprocessor into a library global variable,dpd and
invokes the setup function.

5.2.2 Detection Engine

Each dynamic detection engine library must define the following functions.

165

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int InitializeEngineLib(DynamicEngineData *)

This function initializes the data structure for use by the engine.

The sample code provided with Snort predefines those functions and defines the following APIs to be used by a
dynamic rules library.

• int RegisterRules(Rule **)

This is the function to iterate through each rule in the list,initialize it to setup content searches, PCRE evalution
data, and register flowbits.

• int DumpRules(char *,Rule **)

This is the function to iterate through each rule in the list and write a rule-stop to be used by snort to control the
action of the rule (alert, log, drop, etc).

• int ruleMatch(void *p, Rule *rule)

This is the function to evaluate a rule if the rule does not have its own Rule Evaluation Function. This uses the
individual functions outlined below for each of the rule options and handles repetitive content issues.

Each of the functions below returns RULEMATCH if the option matches based on the current criteria (cursor
position, etc).

– int contentMatch(void *p, ContentInfo* content, uint8 t **cursor)

This function evaluates a single content for a given packet,checking for the existence of that content as
delimited by ContentInfo and cursor. Cursor position is updated and returned in *cursor.
With a text rule, the with option corresponds to depth, and the distance option corresponds to offset.

– int checkFlow(void *p, FlowFlags *flowflags)
This function evaluates the flow for a given packet.

– int extractValue(void *p, ByteExtract *byteExtract, uint8 t *cursor)
This function extracts the bytes from a given packet, as specified by ByteExtract and delimited by cursor.
Value extracted is stored in ByteExtract memoryLocation paraneter.

– int processFlowbits(void *p, FlowBitsInfo *flowbits)
This function evaluates the flowbits for a given packet, as specified by FlowBitsInfo. It will interact with
flowbits used by text-based rules.

– int setCursor(void *p, CursorInfo *cursorInfo, uint8 t **cursor)
This function adjusts the cursor as delimited by CursorInfo. New cursor position is returned in *cursor.
It handles bounds checking for the specified buffer and returns RULENOMATCH if the cursor is moved
out of bounds.
It is also used by contentMatch, byteJump, and pcreMatch to adjust the cursor position after a successful
match.

– int checkCursor(void *p, CursorInfo *cursorInfo, uint8 t *cursor)
This function validates that the cursor is within bounds of the specified buffer.

– int checkValue(void *p, ByteData *byteData, uint32 t value, uint8 t *cursor)

This function compares thevalueto the value stored in ByteData.

– int byteTest(void *p, ByteData *byteData, uint8 t *cursor)
This is a wrapper for extractValue() followed by checkValue().

– int byteJump(void *p, ByteData *byteData, uint8 t **cursor)
This is a wrapper for extractValue() followed by setCursor().

– int pcreMatch(void *p, PCREInfo *pcre, uint8 t **cursor)
This function evaluates a single pcre for a given packet, checking for the existence of the expression as
delimited by PCREInfo and cursor. Cursor position is updated and returned in *cursor.

166

– int detectAsn1(void *p, Asn1Context *asn1, uint8 t *cursor)

This function evaluates an ASN.1 check for a given packet, asdelimited by Asn1Context and cursor.

– int checkHdrOpt(void *p, HdrOptCheck *optData)

This function evaluates the given packet’s protocol headers, as specified by HdrOptCheck.

– int loopEval(void *p, LoopInfo *loop, uint8 t **cursor)

This function iterates through the SubRule of LoopInfo, as delimited by LoopInfo and cursor. Cursor
position is updated and returned in *cursor.

– int preprocOptionEval(void *p, PreprocessorOption *preprocOpt, u int8 t **cursor)

This function evaluates the preprocessor defined option, asspepcifed by PreprocessorOption. Cursor po-
sition is updated and returned in *cursor.

– void setTempCursor(uint8 t **temp cursor, u int8 t **cursor)

This function is used to handled repetitive contents to saveoff a cursor position temporarily to be reset at
later point.

– void revertTempCursor(uint8 t **temp cursor, u int8 t **cursor)

This function is used to revert to a previously saved temporary cursor position.

△! NOTE
If you decide to write you own rule evaluation function, patterns that occur more than once may result in false
negatives. Take extra care to handle this situation and search for the matched pattern again if subsequent rule
options fail to match. This should be done for both content and PCRE options.

5.2.3 Rules

Each dynamic rules library must define the following functions. Examples are defined in the filesfnort dynamic detection lib.c .
The metadata and setup function for the preprocessor shouldbe definedsfsnort dynamic detection lib.h .

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int EngineVersion(DynamicPluginMeta *)

This function defines the version requirements for the corresponding detection engine library.

• int DumpSkeletonRules()

This functions writes out the rule-stubs for rules that are loaded.

• int InitializeDetection()

This function registers each rule in the rules library. It should set up fast pattern-matcher content, register
flowbits, etc.

The sample code provided with Snort predefines those functions and uses the following data within the dynamic rules
library.

• Rule *rules[]

A NULL terminated list of Rule structures that this library defines.

5.3 Examples

This section provides a simple example of a dynamic preprocessor and a dynamic rule.

167

5.3.1 Preprocessor Example

The following is an example of a simple preprocessor. This preprocessor always alerts on a Packet if the TCP port
matches the one configured.

This assumes the the filessf dynamicpreproc lib.c andsf dynamicpreproc lib.h are used.

This is the metadata for this preprocessor, defined insf preproc info.h.

#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define BUILD_VERSION 0
#define PREPROC_NAME "SF_Dynamic_Example_Preprocessor "

#define DYNAMIC_PREPROC_SETUP ExampleSetup
extern void ExampleSetup();

The remainder of the code is defined inspp example.cand is compiled together withsf dynamicpreproc lib.c into
lib sfdynamicpreprocessorexample.so.

Define the Setup function to register the initialization function.

#define GENERATOR_EXAMPLE 256
extern DynamicPreprocessorData _dpd;

void ExampleInit(unsigned char *);
void ExampleProcess(void *, void *);

void ExampleSetup()
{

_dpd.registerPreproc("dynamic_example", ExampleInit) ;

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is setup\n"););
}

The initialization function to parse the keywords fromsnort.conf .

u_int16_t portToCheck;

void ExampleInit(unsigned char *args)
{

char *arg;
char *argEnd;
unsigned long port;

_dpd.logMsg("Example dynamic preprocessor configuratio n\n");

arg = strtok(args, " \t\n\r");

if(!strcasecmp("port", arg))
{

arg = strtok(NULL, "\t\n\r");
if (!arg)
{

_dpd.fatalMsg("ExamplePreproc: Missing port\n");
}

168

port = strtoul(arg, &argEnd, 10);
if (port < 0 || port > 65535)
{

_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port);
}
portToCheck = port;

_dpd.logMsg(" Port: %d\n", portToCheck);
}
else
{

_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", ar g);
}

/* Register the preprocessor function, Transport layer, ID 10000 */
_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 1 0000);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is initialized\n"););
}

The function to process the packet and log an alert if the either port matches.

#define SRC_PORT_MATCH 1
#define SRC_PORT_MATCH_STR "example_preprocessor: src p ort match"
#define DST_PORT_MATCH 2
#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"
void ExampleProcess(void *pkt, void *context)
{

SFSnortPacket *p = (SFSnortPacket *)pkt;
if (!p->ip4_header || p->ip4_header->proto != IPPROTO_TC P || !p->tcp_header)
{

/* Not for me, return */
return;

}

if (p->src_port == portToCheck)
{

/* Source port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,

1, 0, 3, SRC_PORT_MATCH_STR, 0);
return;

}

if (p->dst_port == portToCheck)
{

/* Destination port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,

1, 0, 3, DST_PORT_MATCH_STR, 0);
return;

}
}

5.3.2 Rules

The following is an example of a simple rule, take from the current rule set, SID 109. It is implemented to work with
the detection engine provided with snort.

169

The snort rule in normal format:

alert tcp $HOME_NET 12345:12346 -> $EXTERNAL_NET any \
(msg:"BACKDOOR netbus active"; flow:from_server,establ ished; \
content:"NetBus"; reference:arachnids,401; classtype: misc-activity; \
sid:109; rev:5;)

This is the metadata for this rule library, defined indetectionlib meta.h.

/* Version for this rule library */
#define DETECTION_LIB_MAJOR_VERSION 1
#define DETECTION_LIB_MINOR_VERSION 0
#define DETECTION_LIB_BUILD_VERSION 1
#define DETECTION_LIB_NAME "Snort_Dynamic_Rule_Exampl e"

/* Required version and name of the engine */
#define REQ_ENGINE_LIB_MAJOR_VERSION 1
#define REQ_ENGINE_LIB_MINOR_VERSION 0
#define REQ_ENGINE_LIB_NAME "SF_SNORT_DETECTION_ENGINE"

The definition of each data structure for this rule is insid109.c.

Declaration of the data structures.

• Flow option

Define theFlowFlagsstructure and its correspondingRuleOption. Per the text version, flow is fromserver,established.

static FlowFlags sid109flow =
{

FLOW_ESTABLISHED|FLOW_TO_CLIENT
};

static RuleOption sid109option1 =
{

OPTION_TYPE_FLOWFLAGS,
{

&sid109flow
}

};

• Content Option

Define theContentInfostructure and its correspondingRuleOption. Per the text version, content is ”NetBus”,
no depth or offset, case sensitive, and non-relative. Search on the normalized buffer by default.NOTE: This
content will be used for the fast pattern matcher since it is the longest content option for this rule and no contents
have a flag ofCONTENTFASTPATTERN.

static ContentInfo sid109content =
{

"NetBus", /* pattern to search for */
0, /* depth */
0, /* offset */
CONTENT_BUF_NORMALIZED, /* flags */
NULL, /* holder for boyer/moore info */
NULL, /* holder for byte representation of "NetBus" */

170

0, /* holder for length of byte representation */
0 /* holder for increment length */

};

static RuleOption sid109option2 =
{

OPTION_TYPE_CONTENT,
{

&sid109content
}

};

• Rule and Meta Data

Define the references.

static RuleReference sid109ref_arachnids =
{

"arachnids", /* Type */
"401" /* value */

};

static RuleReference *sid109refs[] =
{

&sid109ref_arachnids,
NULL

};

The list of rule options. Rule options are evaluated in the order specified.

RuleOption *sid109options[] =
{

&sid109option1,
&sid109option2,
NULL

};

The rule itself, with the protocl header, meta data (sid, classification, message, etc).

Rule sid109 =
{

/* protocol header, akin to => tcp any any -> any any */
{

IPPROTO_TCP, /* proto */
HOME_NET, /* source IP */
"12345:12346", /* source port(s) */
0, /* Direction */
EXTERNAL_NET, /* destination IP */
ANY_PORT, /* destination port */

},
/* metadata */
{

3, /* genid -- use 3 to distinguish a C rule */
109, /* sigid */
5, /* revision */
"misc-activity", /* classification */
0, /* priority */

171

"BACKDOOR netbus active", /* message */
sid109refs /* ptr to references */

},
sid109options, /* ptr to rule options */
NULL, /* Use internal eval func */
0, /* Holder, not yet initialized, used internally */
0, /* Holder, option count, used internally */
0, /* Holder, no alert, used internally for flowbits */
NULL /* Holder, rule data, used internally */

• The List of rules defined by this rules library

The NULL terminated list of rules. The InitializeDetectioniterates through each Rule in the list and initializes
the content, flowbits, pcre, etc.

extern Rule sid109;
extern Rule sid637;

Rule *rules[] =
{

&sid109,
&sid637,
NULL

};

172

Chapter 6

Snort Development

Currently, this chapter is here as a place holder. It will someday contain references on how to create new detection
plugins and preprocessors. End users don’t really need to bereading this section. This is intended to help developers
get a basic understanding of whats going on quickly.

If you are going to be helping out with Snort development, please use theHEAD branch of cvs. We’ve had problems
in the past of people submitting patches only to the stable branch (since they are likely writing this stuff for their own
IDS purposes). Bugfixes are what goes intoSTABLE. Features go intoHEAD.

6.1 Submitting Patches

Patches to Snort should be sent to thesnort-devel@lists.sourceforge.net mailing list. Patches should done
with the commanddiff -nu snort-orig snort-new .

6.2 Snort Data Flow

First, traffic is acquired from the network link via libpcap.Packets are passed through a series of decoder routines that
first fill out the packet structure for link level protocols then are further decoded for things like TCP and UDP ports.

Packets are then sent through the registered set of preprocessors. Each preprocessor checks to see if this packet is
something it should look at.

Packets are then sent through the detection engine. The detection engine checks each packet against the various
options listed in the Snort rules files. Each of the keyword options is a plugin. This allows this to be easily extensible.

6.2.1 Preprocessors

For example, a TCP analysis preprocessor could simply return if the packet does not have a TCP header. It can do this
by checking:

if (p->tcph==null)
return;

Similarly, there are a lot of packetflags available that can be used to mark a packet as “reassembled” or logged. Check
out src/decode.h for the list of pkt* constants.

173

6.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it to a new item and change a few things. Later, we’ll document
what these few things are.

6.2.3 Output Plugins

Generally, new output plugins should go into the barnyard project rather than the Snort project. We are currently
cleaning house on the available output options.

174

6.3 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Steve Sturges
Todd Wease
Russ Combs
Ryan Jordan
Dilbagh Chahal

Snort Rules Maintainer Brian Caswell

Snort Rules Team Nigel Houghton
Alex Kirk
Matt Watchinski

Win32 Maintainer Snort Team

RPM Maintainers JP Vossen
Daniel Wittenberg

Inline Developers Victor Julien
Rob McMillen
William Metcalf

Major Contributors Erek Adams
Andrew Baker
Scott Campbell
Roman D.
Michael Davis
Chris Green
Jed Haile
Jeremy Hewlett
Glenn Mansfield Keeni
Adam Keeton
Chad Kreimendahl
Kevin Liu
Andrew Mullican
Jeff Nathan
Marc Norton
Judy Novak
Andreas Ostling
Chris Reid
Daniel Roelker
Dragos Ruiu
Fyodor Yarochkin
Phil Wood

175

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/phrack49/p49-06

[2] http://www.nmap.org

[3] http://public.pacbell.net/dedicated/cidr.html

[4] http://www.whitehats.com

[5] http://www.incident.org/snortdb

[6] http://www.pcre.org

176

	Snort Overview
	Getting Started
	Sniffer Mode
	Packet Logger Mode
	Network Intrusion Detection System Mode
	NIDS Mode Output Options
	Understanding Standard Alert Output
	High Performance Configuration
	Changing Alert Order

	Inline Mode
	Snort Inline Rule Application Order
	Replacing Packets with Snort Inline
	Installing Snort Inline
	Running Snort Inline
	Using the Honeynet Snort Inline Toolkit
	Troubleshooting Snort Inline

	Miscellaneous
	Running in Daemon Mode
	Obfuscating IP Address Printouts
	Specifying Multiple-Instance Identifiers

	Reading Pcaps
	Command line arguments
	Examples

	Tunneling Protocol Support
	Multiple Encapsulations
	Logging

	More Information

	Configuring Snort
	Includes
	Variables
	Config

	Preprocessors
	Frag3
	Stream5
	sfPortscan
	RPC Decode
	Performance Monitor
	HTTP Inspect
	SMTP Preprocessor
	FTP/Telnet Preprocessor
	SSH
	DCE/RPC
	DNS
	SSL/TLS
	ARP Spoof Preprocessor
	DCE/RPC 2 Preprocessor

	Decoder and Preprocessor Rules
	Configuring
	Reverting to original behavior
	Suppression and Thresholding

	Event Thresholding
	Performance Profiling
	Rule Profiling
	Preprocessor Profiling
	Packet Performance Monitoring (PPM)

	Output Modules
	alert_syslog
	alert_fast
	alert_full
	alert_unixsock
	log_tcpdump
	database
	csv
	unified
	unified 2
	alert_prelude
	log null
	alert_aruba_action

	Host Attribute Table
	Configuration Format
	Attribute Table File Format

	Dynamic Modules
	Format
	Directives

	Writing Snort Rules: How to Write Snort Rules and Keep Your Sanity
	The Basics
	Rules Headers
	Rule Actions
	Protocols
	IP Addresses
	Port Numbers
	The Direction Operator
	Activate/Dynamic Rules

	Rule Options
	General Rule Options
	msg
	reference
	gid
	sid
	rev
	classtype
	priority
	metadata
	General Rule Quick Reference

	Payload Detection Rule Options
	content
	nocase
	rawbytes
	depth
	offset
	distance
	within
	http_client_body
	http_cookie
	http_header
	http_method
	http_uri
	fast_pattern
	uricontent
	urilen
	isdataat
	pcre
	byte_test
	byte_jump
	ftpbounce
	asn1
	cvs
	dce_iface
	dce_opnum
	dce_stub_data
	Payload Detection Quick Reference

	Non-Payload Detection Rule Options
	fragoffset
	ttl
	tos
	id
	ipopts
	fragbits
	dsize
	flags
	flow
	flowbits
	seq
	ack
	window
	itype
	icode
	icmp_id
	icmp_seq
	rpc
	ip_proto
	sameip
	stream_size
	Non-Payload Detection Quick Reference

	Post-Detection Rule Options
	logto
	session
	resp
	react
	tag
	activates
	activated_by
	count
	Post-Detection Quick Reference

	Event Thresholding
	Standalone Options
	Standalone Format
	Rule Keyword Format
	Rule Keyword Format
	Examples

	Event Suppression
	Format
	Examples

	Snort Multi-Event Logging (Event Queue)
	Event Queue Configuration Options
	Event Queue Configuration Examples

	Writing Good Rules
	Content Matching
	Catch the Vulnerability, Not the Exploit
	Catch the Oddities of the Protocol in the Rule
	Optimizing Rules
	Testing Numerical Values

	Making Snort Faster
	MMAPed pcap

	Dynamic Modules
	Data Structures
	DynamicPluginMeta
	DynamicPreprocessorData
	DynamicEngineData
	SFSnortPacket
	Dynamic Rules

	Required Functions
	Preprocessors
	Detection Engine
	Rules

	Examples
	Preprocessor Example
	Rules

	Snort Development
	Submitting Patches
	Snort Data Flow
	Preprocessors
	Detection Plugins
	Output Plugins

	The Snort Team

