
MUSCLE PC/SC Lite API
Toolkit API Reference Documentation

David Corcoran & Ludovic Rousseau
corcoran@linuxnet.com, ludovic.rousseau@free.fr

May 26, 2004

Abstract

This toolkit and documentation is provided on an as is basis. The authors shall
not be held responsible for any mishaps caused by the use of this software.

For more information please visit http://www.musclecard.com/.

Document history:
0.8.7 March 8, 2001 latest PDF only version
0.9.0 May 26, 2004 reformat using LATEX, correct bugs and add parts 4 and 5

1

corcoran@linuxnet.com
ludovic.rousseau@free.fr
http://www.musclecard.com/

Contents

1 Introduction/Overview 4

2 Definitions 4

2.1 Defined types . 4

2.2 Error codes . 5

3 API Routines 6

3.1 SCardEstablishContext . 6

3.2 SCardReleaseContext . 7

3.3 SCardListReaders . 8

3.4 SCardListReaderGroups . 9

3.5 SCardConnect . 10

3.6 SCardReconnect . 11

3.7 SCardDisconnect . 13

3.8 SCardBeginTransaction . 14

3.9 SCardEndTransaction . 15

3.10 SCardTransmit . 16

3.11 SCardControl . 18

3.12 SCardStatus . 19

3.13 SCardGetStatusChange . 21

3.14 SCardCancel . 23

3.15 SCardSetTimeout . 24

3.16 SCardGetAttrib . 25

3.17 SCardSetAttrib . 27

3.18 pcsc stringify error . 28

4 Multithreading and contexts 29

5 Some SCardControl commands 29

5.1 IFD EXCHANGE . 30

2

5.2 VERIFY PIN . 30

3

1 Introduction/Overview

This document contains the reference API calls for communicating to the MUSCLE
PC/SC Smart Card Resource Manager. PC/SC is a standard proposed by the PC/SC
workgroup [2] which is a conglomerate of representative from major smart card manufac-
turers and other companies. This specification tries to abstract the smart card layer into
a high level API so that smart cards and their readers can be accessed in a homogeneous
fashion.

This toolkit was written in ANSI C that can be used with most compilers and does
NOT use complex and large data structures such as vectors, etc. The C API emulates
the winscard API that is used on the Windows platform. It is contained in the library
libpcsclite.so that is linked to your application.

I would really like to hear from you. If you have any feedback either on this documentation
or on the MUSCLE project please feel free to email me at: corcoran@musclecard.com.

2 Definitions

2.1 Defined types

The following is a list of commonly used type definitions in the following API. These
definitions and more can be found in the include/pcsclite.h file.

PC/SC type C type

BOOL short

BYTE unsigned char

DWORD unsigned long

LONG long

LPBYTE unsigned char *

LPCBYTE const unsigned char *

LPCTSTR const char *

LPCVOID const void *

LPCWSTR char *

LPDWORD unsigned long *

LPSCARDCONTEXT unsigned long *

LPSCARDHANDLE unsigned long *

LPTSTR char *

LPVOID void *

PSCARDCONTEXT unsigned long *

PSCARDHANDLE unsigned long *

RESPONSECODE long

SCARDCONTEXT unsigned long

SCARDHANDLE unsigned long

ULONG unsigned long

4

corcoran@musclecard.com
include/pcsclite.h

USHORT unsigned short

WORD unsigned long

2.2 Error codes

The following is a list of commonly used errors. Since different cards produce different
errors they must map over to these error messages.

SCARD_S_SUCCESS

SCARD_E_CANCELLED

SCARD_E_CANT_DISPOSE

SCARD_E_CARD_UNSUPPORTED

SCARD_E_DUPLICATE_READER

SCARD_E_INSUFFICIENT_BUFFER

SCARD_E_INVALID_ATR

SCARD_E_INVALID_HANDLE

SCARD_E_INVALID_PARAMETER

SCARD_E_INVALID_TARGET

SCARD_E_INVALID_VALUE

SCARD_E_NO_MEMORY

SCARD_E_NO_SERVICE

SCARD_E_NO_SMARTCARD

SCARD_E_NOT_READY

SCARD_E_NOT_TRANSACTED

SCARD_E_PCI_TOO_SMALL

SCARD_E_PROTO_MISMATCH

SCARD_E_READER_UNAVAILABLE

SCARD_E_READER_UNSUPPORTED

SCARD_E_SERVICE_STOPPED

SCARD_E_SHARING_VIOLATION

SCARD_E_SYSTEM_CANCELLED

SCARD_E_TIMEOUT

SCARD_E_UNKNOWN_CARD

SCARD_E_UNKNOWN_READER

SCARD_F_COMM_ERROR

SCARD_F_INTERNAL_ERROR

SCARD_F_UNKNOWN_ERROR

SCARD_F_WAITED_TOO_LONG

SCARD_W_UNSUPPORTED_CARD

SCARD_W_UNRESPONSIVE_CARD

SCARD_W_UNPOWERED_CARD

SCARD_W_RESET_CARD

SCARD_W_REMOVED_CARD

5

3 API Routines

These routines specified here are winscard routines like those in the winscard API provided
under Windows R©. These are compatible with the Microsoft R© API calls. This list of calls
is mainly an abstraction of readers. It gives a common API for communication to most
readers in a homogeneous fashion.

Since all functions can produce a wide array of errors, please refer to § 2.2 on the preceding
page for a list of error returns.

For a human readable representation of an error the function pcsc_stringify_error()

is declared in pcsclite.h. This function is not available on Microsoft R© winscard API
and is pcsc-lite specific.

3.1 SCardEstablishContext

Synopsis:

#include <winscard.h>

LONG SCardEstablishContext(DWORD dwScope,

LPCVOID pvReserved1,

LPCVOID pvReserved2,

LPSCARDCONTEXT phContext);

Parameters:

dwScope IN Scope of the establishment
This can either be a local or remote connection

pvReserved1 IN Reserved for future use. Can be used for remote connection
pvReserved2 IN Reserved for future use
phContext OUT Returned reference to this connection

Description:

This function creates a communication context to the PC/SC Resource Manager. This
must be the first function called in a PC/SC application.

Value of dwScope Meaning

SCARD_SCOPE_USER Not used
SCARD_SCOPE_TERMINAL Not used
SCARD_SCOPE_GLOBAL Not used
SCARD_SCOPE_SYSTEM Services on the local machine

6

pcsc_stringify_error()

Example:

SCARDCONTEXT hContext;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_VALUE Invalid scope type passed

3.2 SCardReleaseContext

Synopsis:

#include <winscard.h>

LONG SCardReleaseContext(SCARDCONTEXT hContext);

Parameters:

hContext IN Connection context to be closed

Description:

This function destroys a communication context to the PC/SC Resource Manager. This
must be the last function called in a PC/SC application.

Example:

SCARDCONTEXT hContext;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardReleaseContext(hContext);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hContext handle

7

3.3 SCardListReaders

Synopsis:

#include <winscard.h>

LONG SCardListReaders(SCARDCONTEXT hContext,

LPCTSTR mszGroups,

LPTSTR mszReaders,

LPDWORD pcchReaders);

Parameters:

hContext IN Connection context to the PC/SC Resource Manager
mszGroups IN List of groups to list readers (not used)
mszReaders OUT Multi-string with list of readers
pcchReaders INOUT Size of multi-string buffer including NULL’s

Description:

This function returns a list of currently available readers on the system. mszReaders is a
pointer to a character string that is allocated by the application. If the application sends
mszGroups and mszReaders as NULL then this function will return the size of the buffer
needed to allocate in pcchReaders.

The reader names is a multi-string and separated by a nul character (’\0’) and ended
by a double nul character. "Reader A\0Reader B\0\0".

Example:

SCARDCONTEXT hContext;

LPTSTR mszReaders;

DWORD dwReaders;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardListReaders(hContext, NULL, NULL, &dwReaders);

mszReaders = (LPTSTR)malloc(sizeof(char)*dwReaders);

rv = SCardListReaders(hContext, NULL, mszReaders, &dwReaders);

8

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid Scope Handle
SCARD_E_INSUFFICIENT_BUFFER Reader buffer not large enough

3.4 SCardListReaderGroups

Synopsis:

#include <winscard.h>

LONG SCardListReaderGroups(SCARDCONTEXT hContext,

LPTSTR mszGroups,

LPDWORD pcchGroups);

Parameters:

hContext IN Connection context to the PC/SC Resource Manager
mszGroups OUT List of groups to list readers
pcchGroups INOUT Size of multi-string buffer including NULL’s

Description:

This function returns a list of currently available reader groups on the system. mszGroups
is a pointer to a character string that is allocated by the application. If the application
sends mszGroups as NULL then this function will return the size of the buffer needed to
allocate in pcchGroups.

The group names is a multi-string and separated by a nul character (’\0’) and ended by
a double nul character. "SCard$DefaultReaders\0Group 2\0\0".

Example:

SCARDCONTEXT hContext;

LPTSTR mszGroups;

DWORD dwGroups;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardListReaderGroups(hContext, NULL, &dwGroups);

mszGroups = (LPTSTR)malloc(sizeof(char)*dwGroups);

rv = SCardListReaderGroups(hContext, mszGroups, &dwGroups);

9

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid Scope Handle
SCARD_E_INSUFFICIENT_BUFFER Reader buffer not large enough

3.5 SCardConnect

Synopsis:

#include <winscard.h>

LONG SCardConnect(SCARDCONTEXT hContext,

LPCTSTR szReader,

DWORD dwShareMode,

DWORD dwPreferredProtocols,

LPSCARDHANDLE phCard,

LPDWORD pdwActiveProtocol);

Parameters:

hContext IN Connection context to the PC/SC Resource Manager
szReader IN Reader name to connect to
dwShareMode IN Mode of connection type: exclusive or shared
dwPreferredProtocols IN Desired protocol use
phCard OUT Handle to this connection
pdwActiveProtocol OUT Established protocol to this connection.

Description:

This function establishes a connection to the friendly name of the reader specified in
szReader. The first connection will power up and perform a reset on the card.

Value of dwScope Meaning

SCARD_SHARE_SHARED This application will allow others to share the reader
SCARD_SHARE_EXCLUSIVE This application will NOT allow others to share the reader
SCARD_SHARE_DIRECT Direct control of the reader, even without a card

SCARD_SHARE_DIRECT can be used before using SCardControl() to send control com-
mands to the reader even if a card is not present in the reader.

Value of dwPreferredProtocols Meaning

SCARD_PROTOCOL_T0 Use the T=0 protocol
SCARD_PROTOCOL_T1 Use the T=1 protocol
SCARD_PROTOCOL_RAW Use with memory type cards

10

dwPreferredProtocols is a bit mask of acceptable protocols for the connection. You
can use (SCARD_PROTOCOL_T0 | SCARD_PROTOCOL_T1) if you do not have a preferred
protocol.

Example:

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hContext handle
SCARD_E_INVALID_VALUE Invalid sharing mode, requested protocol, or reader name
SCARD_E_NOT_READY Could not allocate the desired port
SCARD_E_READER_UNAVAILABLE Could not power up the reader or card
SCARD_E_SHARING_VIOLATION Someone else has exclusive rights
SCARD_E_UNSUPPORTED_FEATURE Protocol not supported

3.6 SCardReconnect

Synopsis:

#include <winscard.h>

LONG SCardReconnect(SCARDHANDLE hCard,

DWORD dwShareMode,

DWORD dwPreferredProtocols,

DWORD dwInitialization,

LPDWORD pdwActiveProtocol);

11

Parameters:

hCard IN Handle to a previous call to connect
dwShareMode IN Mode of connection type: exclusive/shared
dwPreferredProtocols IN Desired protocol use
dwInitialization IN Desired action taken on the card/reader
pdwActiveProtocol OUT Established protocol to this connection

Description:

This function reestablishes a connection to a reader that was previously connected to using
SCardConnect(). In a multi application environment it is possible for an application to
reset the card in shared mode. When this occurs any other application trying to access
certain commands will be returned the value SCARD_W_RESET_CARD. When this occurs
SCardReconnect() must be called in order to acknowledge that the card was reset and
allow it to change it’s state accordingly.

Value of dwShareMode Meaning

SCARD_SHARE_SHARED This application will allow others to share the reader
SCARD_SHARE_EXCLUSIVE This application will NOT allow others to share the reader

Value of dwPreferredProtocols Meaning

SCARD_PROTOCOL_T0 Use the T=0 protocol
SCARD_PROTOCOL_T1 Use the T=1 protocol
SCARD_PROTOCOL_RAW Use with memory type cards

dwPreferredProtocols is a bit mask of acceptable protocols for the connection. You
can use (SCARD_PROTOCOL_T0 | SCARD_PROTOCOL_T1) if you do not have a preferred
protocol.

Value of dwInitialization Meaning

SCARD_LEAVE_CARD Do nothing
SCARD_RESET_CARD Reset the card (warm reset)
SCARD_UNPOWER_CARD Unpower the card (cold reset)
SCARD_EJECT_CARD Eject the card

Example:

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol, dwSendLength, dwRecvLength;

LONG rv;

BYTE pbRecvBuffer[10];

BYTE pbSendBuffer[] = {0xC0, 0xA4, 0x00, 0x00, 0x02, 0x3F, 0x00};

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

12

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);

dwSendLength = sizeof(pbSendBuffer);

dwRecvLength = sizeof(pbRecvBuffer);

rv = SCardTransmit(hCard, SCARD_PCI_T0, pbSendBuffer, dwSendLength,

&pioRecvPci, pbRecvBuffer, &dwRecvLength);

/* Card has been reset by another application */

if (rv == SCARD_W_RESET_CARD)

{

rv = SCardReconnect(hCard, SCARD_SHARE_SHARED, SCARD_PROTOCOL_T0,

SCARD_RESET_CARD, &dwActiveProtocol);

}

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_NOT_READY Could not allocate the desired port
SCARD_E_INVALID_VALUE Invalid sharing mode, requested protocol, or reader name
SCARD_E_READER_UNAVAILABLE The reader has been removed
SCARD_E_UNSUPPORTED_FEATURE Protocol not supported
SCARD_E_SHARING_VIOLATION Someone else has exclusive rights

3.7 SCardDisconnect

Synopsis:

#include <winscard.h>

LONG SCardDisconnect(SCARDHANDLE hCard, DWORD dwDisposition);

Parameters:

hCard IN Connection made from SCardConnect

dwDisposition IN Reader function to execute

Description:

This function terminates a connection to the connection made through SCardConnect.
dwDisposition can have the following values:

13

Value of dwDisposition Meaning

SCARD_LEAVE_CARD Do nothing
SCARD_RESET_CARD Reset the card (warm reset)
SCARD_UNPOWER_CARD Unpower the card (cold reset)
SCARD_EJECT_CARD Eject the card

Example:

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);

rv = SCardDisconnect(hCard, SCARD_UNPOWER_CARD);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_INVALID_VALUE Invalid dwDisposition

3.8 SCardBeginTransaction

Synopsis:

#include <winscard.h>

LONG SCardBeginTransaction(SCARDHANDLE hCard);

Parameters:

hCard IN Connection made from SCardConnect

Description:

This function establishes a temporary exclusive access mode for doing a series of com-
mands or transaction. You might want to use this when you are selecting a few files and
then writing a large file so you can make sure that another application will not change

14

the current file. If another application has a lock on this reader or this application is in
SCARD_SHARE_EXCLUSIVE there will be no action taken.

Example:

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);

rv = SCardBeginTransaction(hCard);

/* Do some transmit commands */

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_SHARING_VIOLATION Someone else has exclusive rights
SCARD_E_READER_UNAVAILABLE The reader has been removed

3.9 SCardEndTransaction

Synopsis:

#include <winscard.h>

LONG SCardEndTransaction(SCARDHANDLE hCard,

DWORD dwDisposition);

Parameters:

hCard IN Connection made from SCardConnect

dwDisposition IN Action to be taken on the reader

Description:

This function ends a previously begun transaction. The calling application must be the
owner of the previously begun transaction or an error will occur. dwDisposition can
have the following values: The disposition action is not currently used in this release.

15

Value of dwDisposition Meaning

SCARD_LEAVE_CARD Do nothing
SCARD_RESET_CARD Reset the card
SCARD_UNPOWER_CARD Unpower the card
SCARD_EJECT_CARD Eject the card

Example:

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);

rv = SCardBeginTransaction(hCard);

/* Do some transmit commands */

rv = SCardEndTransaction(hCard, SCARD_LEAVE_CARD);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_SHARING_VIOLATION Someone else has exclusive rights
SCARD_E_READER_UNAVAILABLE The reader has been removed

3.10 SCardTransmit

Synopsis:

#include <winscard.h>

LONG SCardTransmit(SCARDHANDLE hCard,

LPCSCARD_IO_REQUEST pioSendPci,

LPCBYTE pbSendBuffer,

DWORD cbSendLength,

LPSCARD_IO_REQUEST pioRecvPci,

LPBYTE pbRecvBuffer,

LPDWORD pcbRecvLength);

16

Parameters:

hCard IN Connection made from SCardConnect

pioSendPci INOUT Structure of protocol information
pbSendBuffer IN APDU to send to the card
cbSendLength IN Length of the APDU
pioRecvPci INOUT Structure of protocol information
pbRecvBuffer OUT Response from the card
pcbRecvLength INOUT Length of the response

Description:

This function sends an APDU to the smart card contained in the reader connected to
by SCardConnect(). The card responds from the APDU and stores this response in
pbRecvBuffer and it’s length in SpcbRecvLength. SSendPci and SRecvPci are structures
containing the following:

typedef struct {

DWORD dwProtocol; /* SCARD_PROTOCOL_T0 or SCARD_PROTOCOL_T1 */

DWORD cbPciLength; /* Length of this structure - not used */

} SCARD_IO_REQUEST;

Value of pioSendPci Meaning

SCARD_PCI_T0 Pre-defined T=0 PCI structure
SCARD_PCI_T1 Pre-defined T=1 PCI structure

Example:

LONG rv;

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol, dwSendLength, dwRecvLength;

SCARD_IO_REQUEST pioRecvPci;

BYTE pbRecvBuffer[10];

BYTE pbSendBuffer[] = { 0xC0, 0xA4, 0x00, 0x00, 0x02, 0x3F, 0x00 };

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);

dwSendLength = sizeof(pbSendBuffer);

dwRecvLength = sizeof(pbRecvBuffer);

rv = SCardTransmit(hCard, SCARD_PCI_T0, pbSendBuffer, dwSendLength,

&pioRecvPci, pbRecvBuffer, &dwRecvLength);

17

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_NOT_TRANSACTED APDU exchange not successful
SCARD_E_PROTO_MISMATCH Connect protocol is different than desired
SCARD_E_INVALID_VALUE Invalid Protocol, reader name, etc
SCARD_E_READER_UNAVAILABLE The reader has been removed
SCARD_W_RESET_CARD The card has been reset by another application
SCARD_W_REMOVED_CARD The card has been removed from the reader

3.11 SCardControl

Synopsis:

#include <winscard.h>

LONG SCardControl(SCARDHANDLE hCard,

DWORD dwControlCode,

LPCVOID pbSendBuffer,

DWORD cbSendLength,

LPVOID pbRecvBuffer,

DWORD pcbRecvLength,

LPDWORD lpBytesReturned);

Parameters:

hCard IN Connection made from SCardConnect

dwControlCode IN Control code for the operation
pbSendBuffer IN Command to send to the reader
cbSendLength IN Length of the command
pbRecvBuffer OUT Response from the reader
pcbRecvLength IN Length of the response buffer
lpBytesReturned OUT Length of the response

Description:

This function sends a command directly to the IFD Handler to be processed by the
reader. This is useful for creating client side reader drivers for functions like PIN pads,
biometrics, or other extensions to the normal smart card reader that are not normally
handled by PC/SC.

Note: the API of this function changed. In pcsc-lite 1.2.0 and before the API was not
Windows R© PC/SC compatible. This has been corrected.

18

see § 5 for a list of supported commands by some drivers.

Example:

LONG rv;

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol, dwSendLength, dwRecvLength;

BYTE pbRecvBuffer[10];

BYTE pbSendBuffer[] = { 0x06, 0x00, 0x0A, 0x01, 0x01, 0x10 0x00 };

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_RAW &hCard, &dwActiveProtocol);

dwSendLength = sizeof(pbSendBuffer);

dwRecvLength = sizeof(pbRecvBuffer);

rv = SCardControl(hCard, 0x42000001, pbSendBuffer, dwSendLength,

pbRecvBuffer, sizeof(pbRecvBuffer), &dwRecvLength);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_NOT_TRANSACTED Data exchange not successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_INVALID_VALUE Invalid value was presented
SCARD_E_READER_UNAVAILABLE The reader has been removed
SCARD_W_RESET_CARD The card has been reset by another application
SCARD_W_REMOVED_CARD The card has been removed from the reader

3.12 SCardStatus

Synopsis:

#include <winscard.h>

LONG SCardStatus(SCARDHANDLE hCard,

LPTSTR szReaderName,

LPDWORD pcchReaderLen,

LPDWORD pdwState,

LPDWORD pdwProtocol,

LPBYTE pbAtr,

LPDWORD pcbAtrLen);

19

Parameters:

hCard IN Connection made from SCardConnect

szReaderName INOUT Friendly name of this reader
pcchReaderLen INOUT Size of the szReaderName multistring
pdwState OUT Current state of this reader
pdwProtocol OUT Current protocol of this reader
pbAtr OUT Current ATR of a card in this reader
pcbAtrLen OUT Length of ATR

Description:

This function returns the current status of the reader connected to by hCard. It’s friendly
name will be stored in szReaderName. pcchReaderLen will be the size of the allocated
buffer for szReaderName, while pcbAtrLen will be the size of the allocated buffer for
pbAtr. If either of these is too small, the function will return with SCARD_E_INSUFFICIENT_BUFFER

and the necessary size in pcchReaderLen and pcbAtrLen. The current state, and protocol
will be stored in pdwState and pdwProtocol respectively. pdwState is a DWORD possibly
OR’d with the following values:

Value of pdwState Meaning

SCARD_ABSENT There is no card in the reader
SCARD_PRESENT There is a card in the reader, but it has not been moved into position

for use
SCARD_SWALLOWED There is a card in the reader in position for use. The card is not

powered
SCARD_POWERED Power is being provided to the card, but the reader driver is unaware

of the mode of the card
SCARD_NEGOTIABLE The card has been reset and is awaiting PTS negotiation
SCARD_SPECIFIC The card has been reset and specific communication protocols have

been established

Value of dwPreferredProtocols Meaning

SCARD_PROTOCOL_T0 Use the T=0 protocol
SCARD_PROTOCOL_T1 Use the T=1 protocol

Example:

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol;

DWORD dwState, dwProtocol, dwAtrLen, dwReaderLen;

BYTE pbAtr[MAX_ATR_SIZE];

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

20

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);

dwAtrLen = sizeof(pbAtr);

rv=SCardStatus(hCard, NULL, &dwReaderLen, &dwState, &dwProtocol,

pbAtr, &dwAtrLen);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_INSUFFICIENT_BUFFER Not enough allocated memory for szReaderName

or for pbAtr
SCARD_E_READER_UNAVAILABLE The reader has been removed

3.13 SCardGetStatusChange

Synopsis:

#include <winscard.h>

LONG SCardGetStatusChange(SCARDCONTEXT hContext,

DWORD dwTimeout,

LPSCARD_READERSTATE rgReaderStates,

DWORD cReaders);

Parameters:

hContext IN Connection context to the PC/SC Resource Manager
dwTimeout IN Maximum waiting time (in miliseconds) for status

change, zero (or INFINITE) for infinite
rgReaderStates INOUT Structures of readers with current states
cReaders IN Number of structures

Description:

This function receives a structure or list of structures containing reader names. It
then blocks for a change in state to occur on any of the OR’d values contained in
dwCurrentState for a maximum blocking time of dwTimeout or forever if INFINITE

is used. The new event state will be contained in dwEventState. A status change might
be a card insertion or removal event, a change in ATR, etc.

This function will block for reader availability if cReaders is equal to zero and rgReaderStates

is NULL.

21

typedef struct {

LPCTSTR szReader; /* Reader name */

LPVOID pvUserData; /* User defined data */

DWORD dwCurrentState; /* Current state of reader */

DWORD dwEventState; /* Reader state after a state change */

DWORD cbAtr; /* ATR Length, usually MAX_ATR_SIZE */

BYTE rgbAtr[MAX_ATR_SIZE]; /* ATR Value */

} SCARD_READERSTATE;

typedef SCARD_READERSTATE *PSCARD_READERSTATE, **LPSCARD_READERSTATE;

Value of dwCurrentState

and dwEventState

Meaning

SCARD_STATE_UNAWARE The application is unaware of the current state, and would
like to know. The use of this value results in an immediate
return from state transition monitoring services. This is
represented by all bits set to zero

SCARD_STATE_IGNORE This reader should be ignored
SCARD_STATE_CHANGED There is a difference between the state believed by the ap-

plication, and the state known by the resource manager.
When this bit is set, the application may assume a signifi-
cant state change has occurred on this reader

SCARD_STATE_UNKNOWN The given reader name is not recognized by the resource
manager. If this bit is set, then SCARD_STATE_CHANGED and
SCARD_STATE_IGNORE will also be set

Value of dwCurrentState

and ddwEventState

Meaning

SCARD_STATE_UNAVAILABLE The actual state of this reader is not available. If this bit
is set, then all the following bits are clear

SCARD_STATE_EMPTY There is no card in the reader. If this bit is set, all the
following bits will be clear

SCARD_STATE_PRESENT There is a card in the reader
SCARD_STATE_ATRMATCH There is a card in the reader with an ATR matching one of

the target cards. If this bit is set, SCARD_STATE_PRESENT
will also be set. This bit is only returned on the SCardLo-
cateCards function

SCARD_STATE_EXCLUSIVE The card in the reader is allocated for exclusive use by an-
other application. If this bit is set, SCARD_STATE_PRESENT
will also be set

SCARD_STATE_INUSE The card in the reader is in use by one or more other appli-
cations, but may be connected to in shared mode. If this
bit is set, SCARD STATE PRESENT will also be set

SCARD_STATE_MUTE There is an unresponsive card in the reader

22

Example:

SCARDCONTEXT hContext;

SCARD_READERSTATE_A rgReaderStates[1];

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rgReaderStates[0].szReader = "Reader X";

rgReaderStates[0].dwCurrentState = SCARD_STATE_UNAWARE;

rv = SCardGetStatusChange(hContext, INFINITE, rgReaderStates, 1);

printf("reader state: 0x%04X\n", rgReaderStates[0].dwEventState);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_VALUE Invalid States, reader name, etc
SCARD_E_INVALID_HANDLE Invalid hContext handle
SCARD_E_READER_UNAVAILABLE The reader is unavailable

3.14 SCardCancel

Synopsis:

#include <winscard.h>

LONG SCardCancel(SCARDCONTEXT hContext);

Parameters:

hContext IN Connection context to the PC/SC Resource Manager

Description:

This function cancels all pending blocking requests on the GetStatusChange() function.

Example:

SCARDCONTEXT hContext;

DWORD cReaders;

SCARD_READERSTATE rgReaderStates;

23

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rgReaderStates.szReader = strdup("Reader X");

rgReaderStates.dwCurrentState = SCARD_STATE_EMPTY;

/* Spawn off thread for following function */

rv = SCardGetStatusChange(hContext, 0, rgReaderStates, cReaders);

rv = SCardCancel(hContext);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hContext handle

3.15 SCardSetTimeout

Synopsis:

#include <winscard.h>

LONG SCardSetTimeout(SCARDCONTEXT hContext,

DWORD dwTimeout);

Parameters:

hContext IN Connection context to the PC/SC Resource Manager
dwTimeout IN New timeout value

Description:

This function is not in Microsoft R© WinSCard API and is deprecated in pcsc-lite API.

The function does not do anything except returning SCARD_S_SUCCESS.

Returns:

SCARD_S_SUCCESS Successful

24

3.16 SCardGetAttrib

Synopsis:

#include <winscard.h>

LONG SCardGetAttrib(SCARDHANDLE hCard,

DWORD dwAttrId,

LPBYTE pbAttr,

LPDWORD pcbAttrLen);

Parameters:

hCard IN Connection made from SCardConnect

dwAttrId IN Identifier for the attribute to get
pbAttr OUT Pointer to a buffer that receives the attribute
pcbAttrLen IN/OUT Length of the pbAttr buffer in bytes

Description:

This function get an attribute from the IFD Handler. The list of possible attributes is
available in the file pcsclite.h.

• SCARD_ATTR_ASYNC_PROTOCOL_TYPES

• SCARD_ATTR_ATR_STRING

• SCARD_ATTR_CHANNEL_ID

• SCARD_ATTR_CHARACTERISTICS

• SCARD_ATTR_CURRENT_BWT

• SCARD_ATTR_CURRENT_CLK

• SCARD_ATTR_CURRENT_CWT

• SCARD_ATTR_CURRENT_D

• SCARD_ATTR_CURRENT_EBC_ENCODING

• SCARD_ATTR_CURRENT_F

• SCARD_ATTR_CURRENT_IFSC

• SCARD_ATTR_CURRENT_IFSD

• SCARD_ATTR_CURRENT_IO_STATE

25

• SCARD_ATTR_CURRENT_N

• SCARD_ATTR_CURRENT_PROTOCOL_TYPE

• SCARD_ATTR_CURRENT_W

• SCARD_ATTR_DEFAULT_CLK

• SCARD_ATTR_DEFAULT_DATA_RATE

• SCARD_ATTR_DEVICE_FRIENDLY_NAME_A

• SCARD_ATTR_DEVICE_FRIENDLY_NAME_W

• SCARD_ATTR_DEVICE_IN_USE

• SCARD_ATTR_DEVICE_SYSTEM_NAME_A

• SCARD_ATTR_DEVICE_SYSTEM_NAME_W

• SCARD_ATTR_DEVICE_UNIT

• SCARD_ATTR_ESC_AUTHREQUEST

• SCARD_ATTR_ESC_CANCEL

• SCARD_ATTR_ESC_RESET

• SCARD_ATTR_EXTENDED_BWT

• SCARD_ATTR_ICC_INTERFACE_STATUS

• SCARD_ATTR_ICC_PRESENCE

• SCARD_ATTR_ICC_TYPE_PER_ATR

• SCARD_ATTR_MAX_CLK

• SCARD_ATTR_MAX_DATA_RATE

• SCARD_ATTR_MAX_IFSD

• SCARD_ATTR_MAXINPUT

• SCARD_ATTR_POWER_MGMT_SUPPORT

• SCARD_ATTR_SUPRESS_T1_IFS_REQUEST

• SCARD_ATTR_SYNC_PROTOCOL_TYPES

• SCARD_ATTR_USER_AUTH_INPUT_DEVICE

• SCARD_ATTR_USER_TO_CARD_AUTH_DEVICE

• SCARD_ATTR_VENDOR_IFD_SERIAL_NO

26

• SCARD_ATTR_VENDOR_IFD_TYPE

• SCARD_ATTR_VENDOR_IFD_VERSION

• SCARD_ATTR_VENDOR_NAME

Not all the dwAttrId values listed above may be implemented in the IFD Handler you
are using. And some dwAttrId values not listed here may be implemented.

Example:

LONG rv;

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol;

unsigned char pbAtr[MAX_ATR_SIZE];

DWORD dwAtrLen;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_RAW &hCard, &dwActiveProtocol);

rv = SCardGetAttrib(hCard, SCARD_ATTR_ATR_STRING, pbAtr, &dwAtrLen);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_NOT_TRANSACTED Data exchange not successful
SCARD_E_INSUFFICIENT_BUFFER Reader buffer not large enough

3.17 SCardSetAttrib

Synopsis:

#include <winscard.h>

LONG SCardSetAttrib(SCARDHANDLE hCard,

DWORD dwAttrId,

LPCBYTE pbAttr,

DWORD cbAttrLen);

27

Parameters:

hCard IN Connection made from SCardConnect

dwAttrId IN Identifier for the attribute to get
pbAttr IN Pointer to a buffer that receives the attribute
pcbAttrLen IN Length of the pbAttr buffer in bytes

Description:

This function set an attribute of the IFD Handler. The list of attributes you can set is
dependent on the IFD Handler you are using.

Example:

LONG rv;

SCARDCONTEXT hContext;

SCARDHANDLE hCard;

DWORD dwActiveProtocol;

unsigned char pbAtr[MAX_ATR_SIZE];

DWORD dwAtrLen;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

rv = SCardConnect(hContext, "Reader X", SCARD_SHARE_SHARED,

SCARD_PROTOCOL_RAW &hCard, &dwActiveProtocol);

rv = SCardSetAttrib(hCard, 0x42000001, "\x12\x34\x56", 3);

Returns:

SCARD_S_SUCCESS Successful
SCARD_E_NOT_TRANSACTED Data exchange not successful

3.18 pcsc stringify error

Synopsis:

#include <pcsclite.h>

char *pcsc_stringify_error(long error);

Description:

This function return a human readable text for the given PC/SC error code.

28

Example:

SCARDCONTEXT hContext;

LONG rv;

rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);

if (rv != SCARD_S_SUCCESS)

printf("SCardReleaseContext: %s (0x%lX)\n",

pcsc_stringify_error(rv), rv);

4 Multithreading and contexts

From version 1.2.0 pcsc-lite is much more multithreading friendly.

You have to follow some rules:

• For security reasons, a context can only be released (using SCardReleaseContext())
by the thread that created it.

• To access different readers (i.e. cards) in different threads, each thread must use a
different context (not necessarily created by this thread itself).

Each thread should create his own context with SCardEstablishContext() and should
release it with SCardReleaseContext() when the context is not necessary any more.

If different threads share a same context, the calls to different functions of the pcsc-lite
API are stored in a queue and the executions serialised for this context because there is
a mutex shared for all the (critical) operations of this context.

Note: The SCF (Smart Card Framework) used by Solaris has not been updated. So if
you compile pcsc-lite using ./configure -enable-scf you will still have a global lock
mechanism.

5 Some SCardControl commands

The commands described here may not be implemented by all the drivers. They are
implemented by the CCID driver available at http://pcsclite.alioth.debian.org/

ccid.html and maybe some other.

The tag names used by these functions are IOCTL_SMARTCARD_VENDOR_*. They are vendor
(driver) specific.

29

http://pcsclite.alioth.debian.org/ccid.html
http://pcsclite.alioth.debian.org/ccid.html

5.1 IFD EXCHANGE

This command is used to send a proprietary command to a reader.

The CCID specification [1] describes a PC_to_RDR_Escape command to send proprietary
commands to the reader.

Example:

#include <wintypes.h>

#include <winscard.h>

#define SCARD_CTL_CODE(code) (0x42000000 + (code))

#define IOCTL_SMARTCARD_VENDOR_IFD_EXCHANGE SCARD_CTL_CODE(1)

SCARDHANDLE hCard;

unsigned char bSendBuffer[MAX_BUFFER_SIZE];

unsigned char bRecvBuffer[MAX_BUFFER_SIZE];

DWORD length;

/* get firmware */

bSendBuffer[0] = 0x02;

rv = SCardControl(hCard, IOCTL_SMARTCARD_VENDOR_IFD_EXCHANGE,

bSendBuffer, 1, bRecvBuffer, sizeof(bRecvBuffer), &length);

printf(" Firmware: ");

for (i=0; i<length; i++)

printf("%02X ", bRecvBuffer[i]);

printf("\n");

5.2 VERIFY PIN

This command is used to perform a secure PIN verification using a smart card reader
equipped with a keyboard or keypad.

The CCID specification [1] describes a PC_to_RDR_Secure command to perform such a
PIN verification.

The bSendBuffer to pass to SCardControl() contains:

• the VERIFY APDU

That is the APDU sent to the card with the PIN code values replaced by the actually
entered PIN code. See the CCID specification [1] for a more precise descruption.

• the CCID abPINDataStructure

30

This is the CCID structure used to parameter the PIN verification command.

You can omit to send the 3 bytes of the bTeoPrologue field. This field is only
significant with a T=1 card.

Example:

#include <wintypes.h>

#include <winscard.h>

#define SCARD_CTL_CODE(code) (0x42000000 + (code))

#define IOCTL_SMARTCARD_VENDOR_VERIFY_PIN SCARD_CTL_CODE(2)

LONG rv;

SCARDHANDLE hCard;

char attribute[1];

DWORD attribute_length;

/* does the reader support PIN verification? */

attribute_length = sizeof(attribute);

rv = SCardGetAttrib(hCard, IOCTL_SMARTCARD_VENDOR_VERIFY_PIN, attribute,

&attribute_length);

if (TRUE == attribute[0])

{

int i, offset;

unsigned char bSendBuffer[MAX_BUFFER_SIZE];

unsigned char bRecvBuffer[MAX_BUFFER_SIZE];

DWORD length;

/* verify PIN */

offset = 0;

/* APDU: 00 20 00 00 08 30 30 30 30 00 00 00 00 */

bSendBuffer[offset++] = 0x00; /* CLA */

bSendBuffer[offset++] = 0x20; /* INS: VERIFY */

bSendBuffer[offset++] = 0x00; /* P1 */

bSendBuffer[offset++] = 0x00; /* P2 */

bSendBuffer[offset++] = 0x08; /* Lc: 8 data bytes */

bSendBuffer[offset++] = 0x30; /* ’0’ */

bSendBuffer[offset++] = 0x30; /* ’0’ */

bSendBuffer[offset++] = 0x30; /* ’0’ */

bSendBuffer[offset++] = 0x30; /* ’0’ */

bSendBuffer[offset++] = 0x00; /* ’\0’ */

bSendBuffer[offset++] = 0x00; /* ’\0’ */

bSendBuffer[offset++] = 0x00; /* ’\0’ */

bSendBuffer[offset++] = 0x00; /* ’\0’ */

31

/* CCID PIN verification data structure */

bSendBuffer[offset++] = 0x00; /* bTimeOut */

bSendBuffer[offset++] = 0x82; /* bmFormatString */

bSendBuffer[offset++] = 0x04; /* bmPINBlockString (PIN length) */

bSendBuffer[offset++] = 0x00; /* bmPINLengthFormat */

bSendBuffer[offset++] = 0x04; /* wPINMaxExtraDigit: min */

bSendBuffer[offset++] = 0x04; /* wPINMaxExtraDigit: max */

bSendBuffer[offset++] = 0x02; /* bEntryValidationCondition */

bSendBuffer[offset++] = 0x00; /* bNumberMessage */

bSendBuffer[offset++] = 0x04; /* wLangId: english */

bSendBuffer[offset++] = 0x09; /* " */

bSendBuffer[offset++] = 0x00; /* bMsgIndex */

bSendBuffer[offset++] = 0x00; /* bTeoPrologue */

bSendBuffer[offset++] = 0x00; /* " */

bSendBuffer[offset++] = 0x00; /* " */

rv = SCardControl(hCard, IOCTL_SMARTCARD_VENDOR_VERIFY_PIN,

bSendBuffer, offset, bRecvBuffer, sizeof(bRecvBuffer), &length);

printf(" card response:");

for (i=0; i<length; i++)

printf(" %02X", bRecvBuffer[i]);

printf("\n");

}

References

[1] Universal Serial Bus, Device Class Specification for USB Chip/Smart Card Inter-
face Devices, 20 March 2001. Revision 1.00, http://www.usb.org/developers/

devclass_docs/ccid_classspec_1_00a.pdf.

[2] PC/SC workgroup. http://www.pcscworkgroup.com/.

32

http://www.usb.org/developers/devclass_docs/ccid_classspec_1_00a.pdf
http://www.usb.org/developers/devclass_docs/ccid_classspec_1_00a.pdf
http://www.pcscworkgroup.com/

	Introduction/Overview
	Definitions
	Defined types
	Error codes

	API Routines
	SCardEstablishContext
	SCardReleaseContext
	SCardListReaders
	SCardListReaderGroups
	SCardConnect
	SCardReconnect
	SCardDisconnect
	SCardBeginTransaction
	SCardEndTransaction
	SCardTransmit
	SCardControl
	SCardStatus
	SCardGetStatusChange
	SCardCancel
	SCardSetTimeout
	SCardGetAttrib
	SCardSetAttrib
	pcsc_stringify_error

	Multithreading and contexts
	Some SCardControl commands
	IFD_EXCHANGE
	VERIFY_PIN

